
AI for Low-Code for AI
Nikitha Rao

nikitharao@cmu.edu
Carnegie Mellon University

United States

Jason Tsay
jason.tsay@ibm.com

IBM Research
United States

Kiran Kate
kakate@us.ibm.com

IBM Research
United States

Vincent J. Hellendoorn
vhellendoorn@cmu.edu

Carnegie Mellon University
United States

Martin Hirzel
hirzel@us.ibm.com

IBM Research
United States

ABSTRACT

Low-code programming allows citizen developers to create pro-
grams with minimal coding effort, typically via visual (e.g. drag-and-
drop) interfaces. In parallel, recent AI-powered tools such as Copi-
lot and ChatGPT generate programs from natural language instruc-
tions. We argue that these modalities are complementary: tools like
ChatGPT greatly reduce the need to memorize large APIs but still
require their users to read (and modify) textual programs, whereas
visual tools abstract away most or all program text but struggle
to provide easy access to large APIs. At their intersection, we pro-
pose LowCoder, the first low-code tool for developing AI pipelines
that supports both a visual programming interface (LowCoderVP)
and an AI-powered natural language interface (LowCoderNL). We
leverage this tool to provide some of the first insights into whether
and how these two modalities help programmers by conducting a
user study. We task 20 developers with varying levels of AI exper-
tise with implementing four ML pipelines using LowCoder, replac-
ing the LowCoderNL component with a simple keyword search in
half the tasks. Overall, we find that LowCoder is especially useful
for (i) Discoverability: using LowCoderNL, participants discovered
new operators in 75% of the tasks, compared to just 32.5% and 27.5%
using web search or scrolling through options respectively in the
keyword-search condition, and (ii) Iterative Composition: 82.5% of
tasks were successfully completed and many initial pipelines were
further successfully improved. Qualitative analysis shows that AI
helps users discover how to implement constructs when they know
what to do, but still fails to support novices when they lack clarity
on what they want to accomplish. Overall, our work highlights the
benefits of combining the power of AI with low-code programming.

ACM Reference Format:

Nikitha Rao, Jason Tsay, Kiran Kate, Vincent J. Hellendoorn, and Martin
Hirzel. 2024. AI for Low-Code for AI. In 29th International Conference on

Intelligent User Interfaces (IUI ’24), March 18–21, 2024, Greenville, SC, USA.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3640543.3645203

This work is licensed under a Creative Commons Attribution International 4.0 License.

IUI ’24, March 18–21, 2024, Greenville, SC, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0508-3/24/03
https://doi.org/10.1145/3640543.3645203

1 INTRODUCTION

Most AI development today involves Python programming with
popular libraries such as scikit-learn (sklearn) [28]. Unfortunately,
writing code, even in a language as high-level as Python, is hard for
citizen developers [22]—people who lack formal training in program-
ming but nevertheless write programs as part of their everyday
work. This is a fairly common situation for data scientists, among
others. AI programming libraries also tend to be large and change
regularly. Needing to remember hundreds of AI operators and their
arguments slows down even professional developers.

Low-code programming [20] reduces the amount of textual code
developers write by offering alternative programming interfaces.
In recent years, it has been embraced by software vendors to both
democratize software development and increase productivity [32].
Most low-code offerings for building AI pipelines currently favor vi-
sual programming [6, 12, 18].While visual programming helps users
navigate complex pipelines, it poorly supports discoverability of API
components in large APIs due to the large range of options and lim-
ited screen space [27]. In parallel, programming by natural language

(PBNL) has recently soared in popularity. Tools like Copilot [1] and
ChatGPT [2] can generate code from natural language prompts in
which users describe what they want to accomplish, which is espe-
cially helpful in ecosystems with large APIs. However, these tools
still generate code, which can be complicated and hard to under-
stand [35], especially without formal training in programming.

At the intersection of these two paradigms, we propose Low-
Coder, the first low-code tool to combine visual programming with
PBNL. We conjecture that the respective strengths of these two low-
code techniques can compensate for each other’s weaknesses. PBNL
uses AI to help users retrieve and use programming constructs
based on natural language queries. This does not always return cor-
rect programs, necessitating a way to help users understand and
fix generated programs. Visual programming complements PBNL
by providing a clear, unambiguous representation of the program
that users can directly manipulate to experiment with alternatives.

Our goal is to help people who know what they want to accom-
plish (e.g., build an AI pipeline) but face syntactic barriers from
the programming language and library (the how part), perhaps due
to a lack of formal programming training. End-users writing soft-
ware face similar “design barriers” [22], where it is difficult to even
conceptualize a solution. In contrast to other popular low-code do-
mains such as traditional software [31], the domain of developing
AI pipelines is particularly difficult in this regard due to its experi-
mental nature where progress has a high degree of uncertainty [39].

https://doi.org/10.1145/3640543.3645203
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3640543.3645203

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

We chose to target sklearn [28] because of its pervasive use, be-
cause visual programming naturally fits the pipeline structure of
sklearn, and because PBNL is particularly useful in aiding recall of
operators from the relatively large API of sklearn.

LowCoder’s visual programming component, LowCoderVP,
lets users snap together visual blocks for AI operators into well-
structured AI pipelines. It uses Blockly [27] to provide a Scratch-
like [31] look-and-feel. The PBNL component, LowCoderNL, lets
users enter natural language queries and predicts relevant operators,
optionally configured with hyper-parameters. It uses a fine-tuned
variant of the CodeT5 model [42] that we developed through ex-
periments with a variety of neural models for program generation,
ranging from training models from scratch to few-shot prompting
large language models [25]. We further noticed that queries usually
mention at most a subset of hyper-parameters for each pipeline
step, so we developed a novel task formulation tailored to this use
case that improved learning outcomes.

We leverage LowCoder to provide some of the first insights into
both how and when low-code programming and PBNL help devel-
opers with various degrees of expertise. We conduct a user study
with 20 participants with varying levels of AI expertise using Low-
Coder to complete four tasks, half of which with the help of the
AI-powered component LowCoderNL. Overall, the combination
of visual programming along with the natural language interface
helped both novice and non-novice users to successfully compose
pipelines (85% of tasks) and then further refine their pipelines (72.5%
of tasks) when using LowCoderNL. Additionally, LowCoderNL
helped users discover previously-unknown operators in 75% of the
tasks compared to just 32.5% using other methods like web search
when LowCoderNL was not available. In addition, despite being
trained on a different dataset, LowCoderNL accurately answered
real user queries. In summary, this paper makes three main contri-
butions:
(i) Low-Code for AI: We introduce LowCoder, a new low-code

tool that combines language models with visual programming
to help develop AI pipelines.

(ii) AI for Low-Code: We benchmark various AI models and de-
velop a novel task formulation to develop an AI powered natu-
ral language interface to LowCoder.

(iii) User Study: We analyze the trade-offs between the two modal-
ities and study the effects of using language models for low-
code programming through a user study involving 20 partici-
pants with varying levels of AI expertise.

While we prototyped LowCoder specifically for sklearn pipelines,
we hope the general findings will help improve low-code tooling
for other API libraries as well.

2 RELATEDWORK

Low-code: In adopting a visual programming approach to low-
code, we follow a long tradition [7]. We were particularly inspired
by Scratch, a popular visual programming environment for children
that uses lego-like connected blocks [31]. Our other inspiration
came from projectional editors, where the visual programming
interface is a projection, or view, over an internal domain-specific
language (DSL) [38]. Our implementation uses Blockly, a meta-tool

Lowcoder figures
File Edit View Insert Format Slide Arrange Tools Extensions Help Last edit was seconds ago

Background Layout Theme Transition

1 Pretraining +
Fine-tuning

Train

Pretraining +
Prompting

Training from
scratch

Training Data

Query

Train

Training Data

Query

Train

Pretraining Data

Training Samples

Query

Train

Pretraining Data

2

LowCoder

Visual Programming

WEKA, Orange,

KNIME, Vertex AI,

Sagemaker, AzureML,

Watson Studio

Natural Language
Interface

ChatGPT,
GitHub Copilot

1 1 2 3 4 5 6 7 8 9

1
1

2
3

4
5

LowCoder

Visual Programming

WEKA, Orange,

KNIME, Vertex AI,

Sagemaker, AzureML,

Watson Studio

Natural Language
Interface

ChatGPT,
GitHub Copilot

Click to add speaker notes

Lowcoder figures Slideshow

 Share

Figure 1: Relationship between LowCoder and other low-

code for AI tools. LowCoder is the only low-code tool that

supports both visual programming and a natural language

interface.

for creating block-based visual programming tools [27], and Lale, a
DSL for machine-learning pipelines [4].
Visual programming for AI:Most low-code interfaces for pro-
gramming AI pipelines use visual programming. Examples include
WEKA [18], Orange [12], and KNIME [6]. Each has a palette of op-
erators that can be dragged onto a canvas, where they can be con-
nected into a boxes-and-arrows style diagram. Commercial low-
code visual interfaces follow the same approach, such as Vertex AI,
Sagemaker, AzureML, and Watson Studio. A related approach for
low-code ML pipeline development is automated machine learn-
ing (AutoML) [34], which is also used by many of the same com-
mercial AI interfaces mentioned earlier. These tools tend to have a
black-box approach where the user has little control over the Au-
toML search and may not even see the resulting pipeline. AutoML
libraries such as auto-sklearn [16], TPOT [26], and hyperopt [5]
provide a Python interface, which is intended for textual code de-
velopment. There are also natural-language interfaces for profes-
sional developers based on large language models such as GitHub
Copilot which uses Codex [10] and ChatGPT. Since these support
APIs for which there is sufficient publicly available code to use
as training data, they cover popular AI libraries such as sklearn.
The main difference between these low-code tools for AI and our
paper is that we combine the ease-of-use of visual programming
with a natural language interface to help users discover and con-
figure operators and, inspired by Scratch [31], our tool encourages
liveness [33] through immediate user feedback for each user input
into the system. This contrasts with most tools that require explicit
training and scoring steps for feedback. Figure 1 summarizes the
relationship between LowCoder and other low-code for AI tools.
Using AI for low-code development: The most prominent AI
technique for low-code is programming by natural language (PBNL).
When Androutsopoulos et al. surveyed natural language interfaces
to databases in 1995, it was already a well-established field [3].
Desai et al. treat PBNL as a program synthesis problem targeting a
DSL designed for the purpose [13]. The Overnight paper addresses
the problem of missing training data for PBNL interfaces by crowd-
sourcing [41]. And SwaggerBot lets users extend and customize a
chatbot from within the chatbot itself [37]. Unlike these works, our
paper uses language models for PBNL, uses PBNL for creating AI
pipelines, and integrates with a visual programming interface.
Combining low-code techniques: Our work combines visual
programming with PBNL. In a similar vein, Rousillon combines
visual programming with programming by demonstration [9] and
Pumice combines programming by demonstration with PBNL [23].

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

Like Rousillon and Pumice, our goal in combining techniques is
to use strengths of each technique to mitigate weaknesses in the
other. However, unlike Rousillon and Pumice, we choose different
techniques to combine and target a different domain, namely AI
pipelines.
User studies on AI tools: There are a few studies that aim to
evaluate whether developers perform better on programming tasks
when working with AI tools. Vaithilingam et al. had developers use
GitHub Copilot on three programming tasks and found that while
neither task success rate nor completion time improved while using
Copilot, developers preferred using it compared to the standard code
completion [35]. Similarly, Xu et al. had developers perform several
programming tasks with and without the use of a natural language
to code generation model and found no significant differences with
regards to code quality, task completion time and program correct-
ness [43].Wang et al. interviewed several data scientists to better un-
derstand their perceptions of automated AI and found that they had
mixed feelings [40]. However, nearly all of them felt that the future
of data science involved collaboration between humans and AI sys-
tems. Unlike other work which tends to focus on how AI supports
software development by experienced developers, our paper fo-
cuses on AI tools in the context of low-code systems where develop-
ers have varying expertise levels in both building software and AI.

3 LOW-CODE FOR AI: LOWCODER TOOL

DESIGN

This work explores the intersection of visual programming and lan-
guage models in an effort to understand the benefits and limitations
of using the combination in low-code programming. We accom-
plish this by implementing and studying LowCoder, a prototype
low-code tool for building ML pipelines with sklearn operators for
tabular data that includes both visual programming (VP) and nat-
ural language (NL) modalities, which complement each other by
mitigating the limitations of either modality separately. Building
this tool provided us with the opportunity to examine the impact
of both modalities on users. Figure 2 highlights the main features
and inputs of LowCoder.

To support multiple low-code modalities, we follow the lead
of projectional code editors [38] by adopting the model-view-
controller pattern. Specifically, we treat visual programming as
a read-write view, PBNL as a write-only view, and let users in-
spect data in a read-only view [20]. The tool keeps these three
views in sync by representing the program in a domain-specific
language (DSL). The domain for the DSL is AI pipelines. A corre-
sponding, practical desideratum is that the DSL is compatible with
sklearn [28], the most popular library for building AI pipelines, and
is a subset of the Python language, in which sklearn is implemented,
which also enables us to use AI models pretrained on Python code.
The open-source Lale library [4] satisfies these requirements, and in
addition, describes hyper-parameters in JSON schema format [29],
which our tool also uses. The current version of our tool supports
143 sklearn operators. LowCoderVP uses a client-server architec-
ture with a Python Flask back-end server and front-end based on
the Blockly [27] meta-tool for creating block-based visual program-
ming tools. The front-end converts the block-based representation
to Lale which is then sent to the back-end. The back-end validates

1. palette 2. canvas

hyperparameters

5. NL Interface

dataset
before

dataset
after

4. stage

pipeline

operator
blocks

score

3. configu-
ration pane

Figure 2: LowCoder interface with labeled components, de-

scribed in the text.

the given Lale pipeline using internal schemas, then evaluates the
pipeline against a given dataset. The results of this evaluation (in-
cluding any error messages) are returned to the front-end and pre-
sented to the user.
3.1 Visual Programming Interface

LowCoderVP is our block-based visual programming interface for
composing and modifying AI pipelines. One goal that this tool
shares with other block-based visual tools such as Scratch [31]
is to encourage a highly interactive experience. The block visual
metaphor allows for blocks that correspond to sklearn operators to
be snapped together to form an AI pipeline. The shape of the blocks
suggest how operators can connect. Their color indicates how they
affect data: red for operators that transform data (with a transform()

method) and purple for other operators that make predictions, such
as classifiers and regressors (with a predict() method).

Figure 2 illustrates the interface. A palette (1) on the left side of
the interface contains all of the available operator blocks. Blocks can
be dragged-and-dropped from the palette to the canvas (2). For ease
of execution, our tool only allows for one valid pipeline at a time,
so blocks must be attached downstream of the pre-defined Start

block to be considered part of the active pipeline. Figure 2 shows an
example of blocks defining a pipeline where the SimpleImputer,
StandardScaler, and DecisionTreeClassifier blocks are con-
nected to the Start block and each other. Input data are transformed
by the first two operators (SimpleImputer and StandardScaler)
and then sent to DecisionTreeClassifier for training and then
scoring. Blocks not attached to the Start block are disabled but can
be left on the canvas without affecting the execution of the active
pipeline. Selected operator blocks also display a hyper-parameter

configuration pane (3) on the right. The pane lists each hyper-
parameter for an operator along with a description (when hovering
over the hyper-parameter name) and default values along with in-
put boxes to modify each hyper-parameter.

Our tool provides a stage (4) with Before and After tables to give
immediate feedback with every input on how the current pipeline

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

affects the given dataset. When a tabular dataset is loaded, the Be-
fore table displays its target column on the left and feature columns
on the right. When a pipeline that transforms input data is executed,
the After table shows the results of the transformations. At any
time, a pipeline can be executed on the given dataset by pressing the
“Run Pipeline” button. Executing a pipeline will attempt to train the
given pipeline on the training portion of the given dataset and then
return a preview of all data transformations on the training data
in a second table. For instance, in the example shown in Figure 2,
executing the pipeline with SimpleImputer and StandardScaler
transforms data from the Before table by imputing missing values
and standardizing all feature values in the After table. If training is
successful, then the trained pipeline is scored against the test set
and the score (usually accuracy) is displayed. LowCoderVP also
encourages liveness [33] by executing the pipeline when either
the active pipeline is modified or hyper-parameters are configured.
For example, adding a PCA operator and setting the n_components
hyper-parameter to 2 for the prior example will reduce the feature
columns in the After table to 2. Hence, users receive immediate
feedback on the effect of pipeline changes on the dataset without
requiring separate training or scoring steps. This liveness encour-
ages a high degree of interactivity [31].

3.2 Natural Language Interface

A potential weakness of visual low code tools is that users have
trouble discovering the right components to use [22]. For instance,
the palette of LowCoderVP contains more than a hundred opera-
tor blocks. Rather than requiring users to know the exact name of
the operator or scroll through so many operators, we provide Low-
CoderNL, which allows users to describe a desired operation in the
NL interface (labeled component 5 in Figure 2) text box and press
the “Predict Pipeline” button. The tool then infers relevant oper-
ator(s) and any applicable hyper-parameters using an underlying
natural-language-to-code translation model and automatically adds
the most relevant operator to the end of the pipeline. The palette is
also filtered to only display any relevant operator(s) such as in Fig-
ure 2. Pressing the “Reset Palette” button will undo filtering (so the
palette shows all available operators again) without clearing the
active pipeline or canvas. Depending on the NL search, the auto-
matically added operator may either have hyper-parameters explic-
itly defined or potentially relevant hyper-parameters highlighted.
As an example, the NL search “PCA with 2 components” will au-
tomatically add the PCA operator where the n_components hyper-
parameter is set to 2 and may highlight other hyper-parameters
such as random_state for the user to consider setting. Section 4
describes the design and implementation of this model in detail. A
potential weakness of natural language low-code tools is that the
generated programs can be incorrect, due to a lack of clarity, or am-
biguity, in the query, or a lack of context for the model providing
inferences [3]. In comparison, visual inputs and representations
are unambiguous [20], requiring no probabilistic interpretation, so
users can easily understand and manipulate the results returned by
LowCoderNL.

To ground our evaluation of LowCoderNL, we also provide a
version of the tool without a trained language model to users in our
study (described in Section 5). In this setting, the NL interface (5)

text box becomes a simple substring keyword search that matches
the query against operator names. For example, inputting “classi-
fier” filters the palette to only display sklearn operators that con-
tain ‘classifier’ in the name such as RandomForestClassifier (but
notably not all classifiers such as SVC).

4 AI FOR LOW-CODE: USING LANGUAGE

MODELS FOR LOW-CODE

This section discusses the language modeling for LowCoderNL.

4.1 Data Collection

Our goal is to make a large API accessible through a low-code tool
by allowing users to describe what they want to do when they do
not know how. More specifically, we want to enable users to build
sklearn pipelines in a low-code setting, using a natural language
interface that can be used as an intelligent search tool. This problem
can be solved using language models that can be trained to translate
a natural language query into the corresponding line of code [15].
However, such models heavily rely on data to learn such behaviour
and would need to be trained on an aligned dataset of natural
language queries and the corresponding sklearn line(s) of code
demonstrating how a user would want to use such an intelligent
search tool. Naturally, we cannot collect such a dataset without this
tool, creating a circular dependency. To overcome this challenge,
we curate a proxy dataset using 140K Python Kaggle notebooks
that were collected as part of the Google AI4Code challenge.1 From
these notebooks, we extracted aligned Natural Language (NL) &
Code cells related to machine learning and data science tasks. While
the distribution of the NL in the markdown cells is not completely
representative of the NL queries that users would enter in the low-
code setting, they provide the model with a broad range of such
examples. Results in Section 5.1.5 show that this is indeed effective.

4.2 Data Preprocessing

We first filter out notebooks that do not contain any sklearn code.
This leaves 84,783 notebooks – evidently, many notebooks involve
sklearn. We further filter out notebooks with non-English descrip-
tions in all of the markdown cells, resulting in 59,569 notebooks.
We then create a proxy dataset by extracting all code cells contain-
ing sklearn code and pairing these with their preceding NL cell to
get a total of 211,916 aligned NL-code pairs. We remove any du-
plicate NL-code pairs, leaving 102,750 unique pairs. For each code
cell, we then extract the line(s) of code corresponding to an sklearn
operation invocation statement.

We discard any code cells that do not include sklearn opera-
tion invocation statements but include other sklearn code, leav-
ing a final total of 79,372 NL-Code pairs. We separate these into
train/validation/test splits resulting in 64,779 train samples, 7,242
validation samples, and 7,351 test samples. See Section B in the ap-
pendix for more details.

4.3 Tasks

Given the NL query, our model aims to generate a line of sklearn
code corresponding to an operation invocation that can be used

1https://www.kaggle.com/competitions/AI4Code

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

Table 1: Task formulations highlighting the code components: mask , operator name , hyper-parameter name ,

hyper-parameter value . The Hybrid Operator Invocation setting does not mask ‘balanced’ as it appears in the query.

Task Formulation Code for the NL query: Random forest with balanced class weight
Operator Name RandomForestClassifier

Complete Operator Invocation RandomForestClassifier (n_estimators = 100 , class_weight = ’balanced’)

Masked Operator Invocation RandomForestClassifier (n_estimators = MASK , class_weight = MASK)

Hybrid Operator Invocation RandomForestClassifier (n_estimators = MASK , class_weight = ’balanced’)

to build the next step of the pipeline. We consider a range of for-
mulations of the task with different levels of details, as illustrated
in Table 1. Additional examples can be found in Section A of the
appendix.

4.3.1 Operator Name Generation. The simplest task is generating
only the operator name from the NL query. This alone can signifi-
cantly help a developer with navigating the extensive sklearn API.
We process the aligned dataset to map the query to the name(s) of
operator(s) invoked in the code cell, discarding any other informa-
tion such as hyper-parameters.

4.3.2 Complete Operator Invocation Generation. At the other ex-
treme, we task the model with synthesizing the complete operation
invocation statement, including all the hyper-parameter names and
values. Preliminary results (discussed in Section 5.1.4) show that
the model often makes up arbitrary hyper-parameter values, result-
ing in lines of code that can rarely be used directly by developers.

4.3.3 Masked Operator Invocation Generation. In this scenario,
we mask out all the hyper-parameter values from the invocation
statement, keeping only their names. The goal of this formulation
is to ensure that the model learns to predict the specific invocation
signature, even if it is unaware of the values to provide for the
hyper-parameters.

4.3.4 Hybrid Operator Invocation Generation (HOI). Manual in-
spection of the NL-code pairs revealed that the queries sometimes
explicitly describe a subset of the hyper-parameter names and val-
ues to be used in the code. When this is the case, the model has
the necessary context to predict at least those hyper-parameter val-
ues. Supporting this form of querying enables users to express the
most salient hyper-parameters up-front. Therefore, we formulated
a new hybrid task, where we keep the hyper-parameter values if
they are explicitly stated in the NL query and mask them otherwise.
This gives the model an opportunity to learn the hyper-parameter
names and values if they are explicitly stated in the description,
and unburdens it from making up values that it lacks the context
to predict by allowing it to generate placeholders (masks) for them.
Evaluation: To evaluate the feasibility of predicting code using the
different task formulations, we train a simple sequence-to-sequence
model (detailed in Section 4.4.1) and compare the results for the
various training tasks in Section 5.1.4. We find HOI to be the most
accurate/reliable formulation for our setting. We therefore proceed
to use this task formulation for training the models.

4.4 Modeling

All tasks from Section 4.3 are sequence-to-sequence tasks. We com-
pare and contrast three different deep learning paradigms for this

type of task, illustrated in Figure 3: 1) train a standard sequence-
to-sequence transformer from scratch, 2) fine-tune (calibrate) a pre-
trained “medium” sized model, 3) query a Large Language Model
(LLM) by means of few-shot prompting [30]. We elaborate on these
models below. Note that we use top-k sampling for our top-5 re-
sults. (Appendix C and D shows a comparison of results with other
decoding strategies.)

4.4.1 Transformer (from scratch). We train a sequence-to-sequence
Transformer model [36] with randomly initialized parameters on
the training data. Our relatively small dataset of ca. 70K training
samples limits the size of a model that can be trained in this manner.
We use a standard model size, with 6 encoder and decoder layers
and 512-dimensional attention across 8 attention heads and a batch
size of 32 sequences with up to 512 tokens each. We use a sentence
piece tokenizer (trained on Python code) with a vocabulary size of
50K tokens. The model uses an encoder-decoder architecture that
jointly learns to encode (extract a representation of) the natural
language sequence and decode (generate) the corresponding sklearn
operator sequences.

4.4.2 Fine-tuning CodeT5. CodeT5 is a pretrained encoder-decoder
transformer model [42] that has shown strong results when fine-
tuned on various code understanding and generation tasks [24].
CodeT5 was pretrained on a corpus of six programming languages

Figure 3: Overview of the “trifecta" of training approaches

used in contemporary deep learning: smaller models are

directly trained from scratch on downstream task data;

medium sized models (100M-1B parameters) are pretrained

with a generic training signal and then fine-tuned on task

data; large models (>1B parameters) are only pretrained on

very large datasets and are prompted with examples from

the training data as demonstration followed by the query.

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

Lowcoder figures
File Edit View Insert Format Slide Arrange Tools Extensions Help Last edit was seconds ago

Background Layout Theme Transition

1 Pretraining +
Fine-tuning

Train

Pretraining +
Prompting

Training from
scratch

Training Data

Query

Train

Training Data

Query

Train

Pretraining Data

Training Samples

Query

Train

Pretraining Data

2

LowCoder

Visual Programming

WEKA, Orange,

KNIME, Vertex AI,

Sagemaker, AzureML,

Watson Studio

Natural Language
Interface

ChatGPT,
GitHub Copilot

3
NL: Build a simple linear support vector classification
Code: SVC(kernel='linear', random_state=MASK)

NL: PCA with 2 components
Code: PCA(n_components=2)

NL: Put the column median instead of missing values
Code: SimpleImputer(missing_values=MASK, strategy='median')

NL: [Enter query here]
Code:

1 1 2 3 4 5 6 7 8 9

1
1

2
3

4
5

NL: Build a simple linear support vector classification
Code: SVC(kernel='linear', random_state=MASK)

NL: PCA with 2 components
Code: PCA(n_components=2)

NL: Put the column median instead of missing values
Code: SimpleImputer(missing_values=MASK, strategy='median')

NL: [Enter query here]
Code:

Click to add speaker notes

Lowcoder figures Slideshow

 Share

Figure 4: Example of a few (3) shot prompting template for

querying a large language model in our study.

from the CodeSearchNet dataset [21] and fine-tuned on several
tasks from the CodeXGLUE benchmark[24] in a multi-task learning
setting, where the task type is prepended to the input string to
inform the model of the task. We fine-tune CodeT5 on the HOI
generation task by adding the ‘Generate Python’ prefix to all NL
queries. We experiment with different size CodeT5 models: codet5-
small (60M parameters), base (220M), and large (770M).

4.4.3 Few-Shot Learning With CodeGen. Lastly, we explore large
language models (LLMs) that are known to perform well in a task-
agnostic few-shot setting [8]. More specifically, we look at CodeGen,
a family of LLMs that are based on standard transformer-based
autoregressive languagemodeling [25]. Pretrained CodeGenmodels
are available in a broad range of sizes, including 350M, 2.7B, 6.1B and
16.1B parameters. These were all trained on three different datasets,
starting with a large, predominantly English corpus, followed by a
multi-lingual programming language corpus, and concluding with
fine-tuning on just Python data, which we use in this work. The
largest model trained this way was shown to be competitive with
Codex [10] on a Python benchmark [25].

Models at this scale are expensive to fine-tune and are in-
stead commonly used for inference by means of “few-shot prompt-
ing" [30]. LLMs are remarkably capable of providing high-quality
completions given an expanded prompt containing examples
demonstrating the task [8]. We prompt our model with 5 such NL-
code examples. Figure 4 illustrates an example prompt with 3 such
pairs. The model does in-context learning on the examples in the
prompt and completes the sequence task, which results in generat-
ing the HOI code.

5 EVALUATION

This section describes the evaluations for the language modeling
that enables LowCoderNL along with the user studies that we
conducted to analyze the benefits and challenges of using low-code
for developing AI pipelines using LowCoder.

5.1 Modeling

5.1.1 Experimental Setup. All of our models are implemented us-
ing PyTorch transformers and the HuggingFace interface. We use
the latest checkpoints of the CodeT5 [42] and CodeGen [25] models.
Our models were trained on a single machine with multiple 48 GB
NVIDIA Quadro RTX 8000 GPUs until they reached convergence
on the validation loss. We clip input and output sequence lengths

to 512 tokens, but reduce the latter to 64 when using the model in
LowCoder to reduce inference time. We find in additional experi-
ments that since few predictions are longer than this threshold, this
incurs no significant decrease in accuracy, but speeds up inference
by 34%. We use a batch size of 32 for training and fine-tuning all of
our Transformer and CodeT5 models, except for CodeT5-large, for
which we used a batch size of 64 to improve stability during training.

5.1.2 Test Datasets. To ensure a well-rounded evaluation, we look
at two different test datasets.
(i) Test data (from notebooks) - We use the NL-code pairs from
the Kaggle notebooks we created in Section 4.2 containing 7,351
samples. These are noisy – some samples contain vague and un-
derspecified Natural Language (NL) queries, such as - “Data pre-

processing”, “Build a model”, “Using a clustering model”. Others
contain multiple operator invocation statements corresponding
to a single NL query, even though the NL description only men-
tions one of them, e.g., “Model # 2 - Decision Trees” corresponds
to DecisionTreeClassifier() and confusion_matrix(y_true,
y_pred). Furthermore, these samples were collected from Kaggle
notebooks, so the distribution of the NL queries collected from the
markdown cells are not necessarily representative of NL queries
that real users may enter into LowCoderNL.
(ii) Real user data - We log all the NL queries that users searched
for in LowCoder during the user studies along with the list of op-
erators that the model returned. This gives us a more accurate dis-
tribution of NL queries that developers use to search for operators
in LowCoderNL. We obtained a total of 218 samples in this way,
which we then manually annotated to check whether (i) the predic-
tions were accurate, that is, if the operators in any of the predic-
tions matches the inferred intent in the query and (ii) the NL query
was clear, with an inter-rater agreement of 97.7% and a negotiated
agreement [17] of 100%. (See Appendix E for details on annotation
guidelines.)

5.1.3 Test Metrics. We use both greedy (top-1) and top-K (top-5)
decoding (see Section C in appendix) when generating the operator
invocation sequences for each NL query. We evaluate the models’
ability to generate just the operator name as well as the entire
operator invocation (including all the hyper-parameter names and
values) based on the hybrid formulation.

5.1.4 Task Comparison. We first train a series of randomly initial-
ized 6-layer Transformer models from scratch on each task formu-
lation from Section 4.3. We compare the model’s ability to correctly
generate the operator name and the operator invocation based on
the formulation corresponding to the training task using top-1 and
top-5 accuracy as shown in Figure 5. We find that the hybrid formu-
lation of the operation invocation task, while challenging, is indeed
feasible and allowed the model to achieve reasonably strong perfor-
mance when generating the entire operation invocation statement.
Contrary to the other task formulations, a model trained with the
HOI signal also achieved comparable performance to the model
trained solely on operator names when evaluated purely on op-
erator name prediction (ignoring the generated hyper-parameter
string). These results highlight that the hybrid representation helps
the model learn by unburdening it from inferring values that it
lacks the context to predict.

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

Figure 5: Accuracy of Transformer models trained from

scratch on various task formulations. ‘Invocation’ test re-

sults refer to the specific invocation formulation of the train-

ing task, while ‘Names only’ just considers whether the gen-

erated code starts with the correct operator name. Only the

Hybrid Operator Invocation setting yields useful quality on

both tasks.

0

10

20

30

40

50

60

70

80

90

100

0.01 0.10 1.00 10.00

To
p

-5
 A

cc
ur

ac
y

(*
to

p-
3

fo
r

>
1

0B
)

Billion Parameters

CodeT5 (Name) CodeT5 (Invocation)
From-scratch (Name) From-scratch (Invocation)
CodeGen (Name) CodeGen (Invocation)

*

*

0.06 0.22 0.770.13 166.12.70.35

Figure 6: Accuracy vs. model size based on top-5 sampling.

(*The 16B CodeGen uses top-3 due to memory constraints.)

We compare the three modeling paradigms, namely training

transformer from scratch, finetuning CodeT5, and fewshot

prompting CodeGen, on both Operator Name generation and

Hybrid Operator Invocation generation.

5.1.5 Model Comparison. We next evaluate the performance of the
trifecta of modeling strategies from Section 4.4 on the task of Hybrid
Operation Invocation (HOI) generation. We benchmark across dif-
ferent model sizes and compare the performance for both operator
name and operator invocation generation using top-5 accuracy in

Figure 6. (See Section D in the appendix for additional results and ab-
lation studies.) The results show that the 0.77B parameter fine-tuned
CodeT5 is the best performing model with an accuracy of 73.57%
and 41.27% on the test data for the operation name and operation
invocation generation respectively. The 0.22B parameter fine-tuned
CodeT5model has comparable performance, but its inference time is
approximately 2–3 seconds faster than the 0.77B fine-tuned CodeT5
model, making it more desirable for integration with the tool.

5.1.6 Performance in Practice. Up to this point, all our evaluations
have been based on the proxy dataset from Kaggle. To get a better
idea of the model’s performance in the real world, we further evalu-
ate the performance of the fine-tuned 0.22B parameter CodeT5-base
from the tool on real user data that was collected during the user
studies. The distribution of NL queries collected from the user stud-
ies represents the “true" distribution of queries that can be expected
from users in a low-code setting. Out of the 218 samples that were
collected, we found only one sample in which a user explicitly speci-
fied a hyper-parameter value in their query. We therefore only com-
pute the accuracy of the operation name generated rather than the
entire operation invocation (as they would use default values any-
way and so the scores remain the same except for that one sample).

Out of 218 query requests, the fine-tuned CodeT5-base model
that was used in our tool answered 150 queries correctly, which
would suggest an overall accuracy of 68.8%. However, 33 of these
requests targeted actions that are not supported by the sklearn API,
such as dropping a column (commonly the territory of the Pandas
library). Disregarding such unsupported usage, LowCoderNL an-
swered 141 out of 185 queries correctly for an overall accuracy of
76.2%. For 33 additional samples, neither annotator could infer a rea-
sonable ground truth since the prompt was unclear (e.g.: “empty").
Leaving these out, i.e., when the prompt is both clear and the opera-
tor is supported by the tool, LowCoderNL was accurate in over 90%
(137/152) of completions (refer to Appendix F for additional results).

5.2 User Study

We conducted a user study with 20 participants with varying levels
of AI expertise to create AI pipelines using LowCoder across four
tasks, replacing LowCoderNL with a simple keyword search in half
the tasks. We collect and analyze data to investigate the following
research questions:
RQ1: How do LowCoderNL and other features help participants

discover previously-unknown operators?
RQ2: Are participants able to compose and then iteratively refine

AI pipelines in our tool?
RQ3: What are the benefits and challenges of integrating language

models with visual programming for low-code?

5.2.1 Study Methodology. We recruited 20 participants within the
same large technology company via internal messaging channels.
We expect that citizen developers without formal programming
training may also have varying levels of AI expertise and intention-
ally solicited participants of all backgrounds. Potential participants
filled out a short pre-study survey to self-report experience in the
following: machine learning, data preprocessing, and sklearn using
a 1 (no experience) to 5 (expert) scale. Participants include a mix of
roles including developers, data scientists, and product managers

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

working in a variety of domains such as AI, business informatics,
quantum computing, and software services. 25% of the participants
are female and the remaining 75% are male. 40% of the participants
self-reported being novices in machine learning by indicating a 1
or 2 in the pre-study survey.

The study design is within-subjects [11] where each participant
was exposed to two conditions: using LowCoder with (NL condi-

tion) and without (keyword condition) the natural language (NL)
interface powered by LowCoderNL. The keyword condition used
a simple substring filter for operator names. Each participant per-
formed four tasks (described below) total across the two conditions.
For each participant, the order of the conditions and the order of
the tasks were shuffled such that there is a uniform distribution of
the order of conditions and tasks.

As our study included machine learning novices, we gave each
participant a short overview of the basics of machine learning with
tabular datasets and data preprocessing. We avoided using specific
terms or names of operators in favor of more general descriptions
of data-related problems.

We then gave each participant an overview of LowCoder. To
mitigate potential biasing or priming, the tool overview used a
fifth dataset from the UCI repository [14]. To avoid operators that
were potentially useful in user tasks, the overview used both a non-
sklearn operator that was not available in the study versions of the
tool as well as sklearn’s DummyClassifier that generates predictions
without considering input features. Participants were allowed to use
external resources such as web search engines or documentation
pages. Nudges were given by the study administrators after five
minutes if necessary to help participants progress in a task. Nudges
were in the form of reminders to use tool features such as the NL
interface, external resources, or to include missing steps such as
data preprocessing or classifiers. Nudges did not mention specific
operator names nor guidance on specific actions to take.

For each version of the tool, study administrators would describe
the unique features of the particular version and then have partici-
pants perform tasks using two out of four sample datasets. After
performing tasks using both versions of the tool and all four sample
datasets, participants were asked to provide open-ended feedback
and/or reactions for both LowCoder and the comparison between
the NL and keyword conditions.

5.2.2 Tasks Description. Each participant performed a total of
four tasks. For each task, participants were instructed to create AI
pipelines with data preprocessing and classifier steps on a sample
dataset with as high a score (accuracy on the test set) as possible
during a time period of five to ten minutes. Each sample dataset
was split beforehand into separate train and test sets. Tasks were
open-ended with no guidance on what preprocessing steps or clas-
sifiers should be used.

There were four sample datasets in total and each participant was
exposed to all four. The sample datasets are based on public tabular
datasets from the UCI Machine Learning Repository [14], as follows:

• Dataset A modifies the Iris dataset to include missing values
in the form of not-a-number (NaN) for 30% of values.

• Dataset B is the Covertype dataset and demonstrates fea-
tures with differing scales.

Table 2: Incidence of taskswhere participants find previously-

unknown operators per condition (40 tasks for all, 16 tasks by

novices, and 24 by non-novices). Note that rows may not sum

to 100% as participants can use multiple methods to discover

operators for a given task or not discover operators at all.

Condition Participant

Method of Discovery

LowCoderNL Web search Palette

NL
All 30 (75.0%) 5 (12.5%) 5 (12.5%)

Novice 8 (50.0%) 2 (12.5%) 4 (25.0%)
Non-Novice 22 (91.7%) 3 (12.5%) 1 (4.2%)

Keyword
All Not available

in this condi-

tion.

13 (32.5%) 11 (27.5%)
Novice 3 (18.8%) 5 (31.3%)

Non-Novice 10 (41.7%) 6 (25.0%)

• Dataset C is the Digits dataset and demonstrates relatively
higher dimensionality.

• Dataset D is a modified version of the Mushroom dataset
that only contains categorical features.

• The tutorial uses the Abalone dataset.
While Datasets A and D require a specific data preprocessing step
in order to successfully create a pipeline, B and D do not techni-
cally require preprocessing to proceed. The specific datasets and
train/test splits used are also available as artifacts.

5.2.3 Data Collection and Analysis. To answer our research ques-
tions, for each participant, we collect and analyze both quantita-
tive and qualitative data. For quantitative data, we report on the
incidence of participants discovering a previously-unknown opera-
tor (RQ1) and the incidence of completing the task and iterating or
improving the pipeline (RQ2). We consider an operator ‘previously-
unknown’ if the participant found and used the operator without
using the exact or similar name. For example, using an NL query
such as “deal with missing values” to find the SimpleImputer opera-
tor is considered discovering a previously-unknown operator while
a query such as “simpleimpute” is not. We report discovery using
the following methods: through LowCoderNL, generic web search
engine (Google), and scrolling through the palette. Participants
may discover multiple unknown operators during the same task,
possibly using different methods. For each participant’s task, we
consider it ‘complete’ if the composed pipeline successfully trains
against the dataset’s training set and returns a score against the test
set. We consider the pipeline iterated if a participant modifies an
already-complete pipeline. More specifically, we consider the fol-
lowing forms of iteration: a preprocessing operator block is added
or swapped, a classifier block is swapped, or hyper-parameters are
tuned. We report each of these as separate types of pipeline itera-
tion. Participants may perform multiple types of iteration during
the same task. Both sets of quantitative metrics are counted per
task (80 tasks total for 20 participants, 40 tasks per condition).

We use qualitative data to answer RQ3. This data focuses on the
participants’ actions in LowCoder, commentary while using the
tool and performing tasks, and answers to open-ended questions
after the study. Specifically, the same two authors that administered
the user study analyzed the notes generated by the study along with
the audio and screen recordings when the notes were insufficient,
using discrete actions and/or quotations as the unit of analysis. The

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

first round of analysis performed open coding [11] on data from 16
studies to elicit an initial set of 73 themes. The two authors then
iteratively refined the initial themes through discussion along with
identifying 13 axial codes which are summarized in Figure 7. The
same authors then performed the same coding process on a hold-
out set of 4 studies. No additional themes were derived from the
hold-out set of studies, suggesting saturation.

5.2.4 Study Results. We answer RQ1 and RQ2 using quantitative
data collected from observing participant actions per task and an-
swer RQ3 through open coding of qualitative data.
RQ1: How do LowCoderNL and other features help partici-

pants discover previously-unknown operators?

A known limitation of visual programming is discoverability [27].
Table 2 reports how often participants discovered previously-
unknown operators during their tasks. 80% of the participants dis-
covered an unknown operator across 63.8% of all 80 tasks in the
study. Participants discovered unknown operators in 82.5% of the
40 NL condition tasks compared to 45% of the 40 keyword condi-
tion tasks. The odds of discovering an unknown operator are signif-
icantly greater in the NL condition than keyword (𝑝≪0.001) using
Barnard’s exact test. We examine the methods of discovery in more
detail, noting that LowCoderNL is only available in the NL condi-
tion whereas web search and scrolling through the operator palette
are available in both conditions. Participants were not able to use
the keyword search to discover unknown operators due to needing
at least part of the exact name. Using LowCoderNL, participants
discovered unknown operators in 75% of tasks in the NL condi-
tion as opposed to an average of 22.5% using web search engines
(12.5% in the NL condition and 32.5% in the keyword condition)
and an average of 20% by scrolling through the operator palette
(12.5% in the NL condition and 27.5% in the keyword condition).
Within the NL condition, the odds of an unknown operator being
discovered are significantly greater using LowCoderNL as opposed
to both web search (𝑝 ≪ 0.001) and scrolling (𝑝 ≪ 0.001). When
splitting on the experience of the participant, we find statistically
greater chances of novices discovering operators in the NL condi-
tion using LowCoderNL as opposed to web search (p=0.013) but not
scrolling (p=0.086). Non-novices were significantly more likely to
discover operators using LowCoderNL compared to web search or
scrolling (𝑝≪0.001, 𝑝≪0.001). Results do not change if considering
web searches or scrolling across all 80 tasks. These results suggest
that LowCoderNL is particularly helpful in discovering previously-
unknown operators, especially compared to web search, but novices
still face some challenges. We discuss these challenges in RQ3.
RQ2: Are participants able to compose and then iteratively

refine AI pipelines in our tool?

Machine learning development is intensely iterative [39] and
tools should support this. Table 3 reports how often participants it-
erated on pipelines. Participants completed 82.5% of the 80 tasks in
the study and further iterated their pipelines in 72.5% of the tasks.
Splitting on condition, the NL condition has 85% task completion
and 72.5% further iteration while the keyword condition has 80%
task completion and 72.5% iteration rate. Swapping classifiers was
the most common form of iteration at 48.8%, followed by adding or
swapping preprocessors at 43.8% and setting hyper-parameters at
30%. Comparing novices to non-novices, both types of participants

Table 3: Incidence of tasks where participants complete and

iterate on preprocessors, classifiers, and hyper-parameters.

Iteration Type

Total Tasks
(80)

Novice
(32)

Non-Novice
(48)

Task Completion 66 (82.5%) 21 (65.6%) 45 (93.8%)
Swap Classifier 39 (48.8%) 11 (34.4%) 28 (58.3%)

Add/Swap Preprocessors 35 (43.8%) 15 (46.9%) 20 (41.7%)
Set Hyper-parameters 24 (30.0%) 4 (19.0%) 20 (41.7%)

All Iterations 58 (72.5%) 20 (62.5%) 38 (79.2%)

are mostly successful in iterating pipelines with no significant dif-
ferences in iteration rate using Barnard’s exact test (p=0.109). This
result holds when iterating preprocessors (p=0.664) but not classi-
fiers (p=0.038) nor hyper-parameters (p=0.005). Non-novices are
more likely to complete the task than novices (p=0.002). Regardless
of experience, both novices and non-novices are able to iteratively
refine their pipelines, but novices face some challenges compared
to non-novices regarding actually completing the task. These chal-
lenges are discussed in the next research question.
RQ3: What are the benefits and challenges of integrating

language models with visual programming for low-code?

Figure 7 shows our 13 axial codes for answering RQ3. These codes
broadly represent three overarching themes regarding combining
visual programming and language models for low-code:

1) Discovery of machine learning operators relevant for the task
at hand, 2) Iterative Composition of the operators in the tool, and
3) Challenges that participants, particularly novices, face regarding
working with machine learning and/or using low-code tools. We
also collect Feedback from participants to inform future develop-
ment of LowCoder. Due to space limitations, we only report on
a selection of the 13 axial codes and 73 codes derived from open
coding (refer to Appendix G for the full list of codes).

For the first category of Discovery, our analysis derived two
axial codes related to the participants’ goal while attempting to
discover operators: 1) Know “What” Not “How” where participants
have a desired action in mind but do not know the exact operator
that performs that action (19 out of 20 participants experienced this
axial code) and 2) Know “What” And “How” where participants have
a particular action and operator in mind (18/20). We dive deeper
into Know “What” Not “How” which includes the code where partic-
ipants Discover a previously-unknown operator using NL (16/20). We
found in RQ1 that LowCoderNL was helpful in finding unknown
operators compared to other methods. The qualitative data sug-
gests that participants were able to find unknown operators using
LowCoderNL during cases where they have an idea of the action
to perform but do not know the exact operator name for a variety
of reasons. For example, when discovering SimpleImputer with
LowCoderNL, P11 noted that they “never used SimpleImputer but

had an idea of what I wanted to do, even though I generally remove

NaNs in Pandas.” Another example is P16 who “preferred the [NL

version of LowCoder], even when I was doing Google searches, they...

didn’t give me options, your tool at least returns some options that I

can try out and swap out.” As a novice, P16 had difficulties finding
the names of useful operators from web search results as opposed
to the LowCoderNL which directly returned actionable operators.
Challenges regarding general web search is also an axial code.

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

Figure 7: Axial codes from our qualitative analysis.

For the second category of Iterative Composition, we derived
four axial codes related to participant behaviors while attempting
to compose and iterate on pipelines: 1) General Exploratory (13/20)
iteration, 2) Exploratory iteration but where participants will select
operators or hyper-parameters seemingly at Random (18/20), 3) Tar-
geted (19/20) iteration where participants select operators or hyper-
parameters with a particular intent, and 4) Seeking Documenta-

tion (15/20) where participants search for documentation to inform
iteration decisions. For both forms of Exploratory iteration and Tar-
geted iteration, we find examples of participants iterating classifiers,
preprocessors, and hyper-parameters. For the axial code of seem-
ingly Random iteration, participants, especially (but not exclusively)
novices, when unsure of how to proceed, tended to try out arbitrary
preprocessors or classifiers. This was more common for more diffi-
cult tasks that required particular data preprocessing to proceed.
For example, non-novice P9 remarked “I’m not familiar enough with

it, so do I Google it or brute force it? [...] I don’t even know what to

Google to figure this out... I guess I’ll do some light brute-forcing” and
proceeded to swap in and out preprocessors from the palette. In
contrast, the axial code of Targeted (19/20) iteration has codes that
reflect particular intentions that participants derived from observa-
tions within the tool, such as Noticing error messages (10/20) orMak-

ing use of data tables in task (14/20). As an example of the data tables
case, P11 realized through the Before data table that the given dataset
had “too many columns” and added the IncrementalPCA operator
along with setting its n_components hyper-parameter to 5. Upon
seeing the change in data in the After data table, they remarked,
“Wow... I really like that I can see all the hyper-parameters that I can

play with” and proceeded to tune various hyper-parameters.
The third category is the variety of Challenges that participants

faced while using LowCoder and performing the machine learning
tasks, where we derive six axial codes: 1) General challenges (10/20)
faced by participants that are not particular to our tool or tasks, 2)

Not Knowing “What” (15/20) where participants experienced diffi-
culties due to knowing neither “what” nor “how” to begin, 3) Gen-
eral Discovery challenges (15/20), 4) Discovery challenges around
using Web search (14/20), 5) Discovery challenges when using Tool

search (17/20) or specifically using LowCoderNL, and 6) Tool Func-
tionality (19/20) which describes challenges participants faced us-
ing (or not using) LowCoder features. We dive deeper into the ax-
ial code of Not Knowing “What” and note its contrast to the Know
“What” Not “How” axial code where participants may have inten-
tions but not know how to execute them or the Exploratory iteration
axial code where participants may not have specific intentions but
know how to iterate. All novices (8/8) and most non-novices (7/12)
experienced this challenge. The primary code is that participants
Did not know “what” they wanted to do (11/20). One possible cause
of this lack of progression is choice paralysis, for example on P17’s
first task, “first things first, I don’t even know where to begin... right

now it’s super overwhelming, I guess I’ll start throwing stuff in there.”

We also describe the axial code of Tool search (17/20) where partici-
pants had difficulties forming search queries for LowCoderNL.

Participants noted that despite the interface being intended for
general natural language, the interface still Needed a specific vocab-
ulary (8/20). As P19, a novice, described it, “I get the idea of how it’s

supposed to work but it’s hit and miss... even if I use very layman’s

terms... it expects a non-naive explanation of what needs to be done.”

Part of this challenge may be due to a mismatch in the natural lan-
guage in Kaggle notebooks used to train LowCoderNL and the lan-
guage used by novices.

6 REFLECTION OF PRACTICAL AND

SOCIETAL IMPACT

Our results show that the integration of LowCoderVP with Low-
CoderNL was helpful with aspects like operator discovery (RQ1) or
iteratively composing pipelines (RQ2), even for novice participants.
Through our work, we hope to help with the democratization of AI
by supporting users with varying levels of AI expertise. LowCoder
is especially useful for citizen developers who have an idea of what
they would like to do but do not fully know how to accomplish
that, perhaps due to a lack of formal programming training. In fact,
our qualitative analysis (RQ3) reveals that a number of our partici-
pants (including all novices who participated) struggled with know-
ing what to do. End-users writing software face similar “design
barriers” [22], where it is difficult for a non-programmer to even
conceptualize a solution. In contrast to other popular low-code do-
mains such as traditional software [31], the domain of developing
machine learning pipelines is particularly difficult in this regard
due to its experimental nature, where progress has a high degree
of uncertainty [39]. This uncertainty then requires an abundance
of judgment calls that rely heavily on prior machine learning expe-
rience [19] that novices lack. Some participants in our studies echo
this, identifying that some ML knowledge is necessary to use our
tool. That suggests that our low-code approach may be best-suited
for citizen developers who have some domain knowledge but lack
programming training, such as statisticians for the low-code domain

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

of machine learning. A further improved low-code machine learn-
ing tool could thus be made more suitable towards novice citizen de-
velopers by guiding them to discover the what along with the how,
i.e., by helping developers acquire the necessary ML knowledge.

Assisting novices without domain knowledge may then require
low-code approaches that are orthogonal to both visual program-
ming and language models. One such approach, suggested by a
study participant, is to provide suggestions in the form of tem-
plates or recipes for pipelines. These suggestions could also be con-
textual to the given dataset or active pipeline, for example auto-
matically suggesting encoders when detecting categorical features.
Ko et al. [22] also suggest templates as a possible solution for de-
sign barriers. A related suggestion made by a number of our study
participants is data visualization and summarization for the given
dataset, such as plots, charts, confusion matrices, etc. These visual-
izations could themselves inform contextual suggestions – a his-
togram detecting a non-standard distribution may suggest the need
for a StandardScaler. These contextual suggestions may also help
in guiding developers in what to do, making for a more generally
useful low-code tool for both citizen and experienced developers
alike. Additionally, some visual programming languages risk ven-
dor lock-in; we avoid that problem by backing LowCoderVP with
a pre-existing, open-source DSL with the Lale library.

Threats to Validity: The user study for LowCoder has several
limitations. The study focused on relatively small, public tabular
datasets and sklearn operators and may not be indicative of other
machine learning tasks such as deep learning on large datasets. Par-
ticipants also all come from the same large technology company
and may not be representative of general users. However, we did
intentionally elicit participation from a variety of groups and ex-
perience levels to mitigate this. As our user study has a within-
subjects design, there may be potential learning effects between
tasks and conditions. In fact, we observed some cases of this (8/20),
with some participants explicitly mentioning selecting particular
operators due to the previous task. We mitigated this learning ef-
fect by randomizing the order of tasks and conditions, as well as
by having two tasks (A and D) require the use of preprocessing op-
erators that were not applicable to other tasks.
7 CONCLUSION

We developed LowCoder, a low-code tool that combines visual pro-
gramming (via a block-based editor, LowCoderVP) with program-
ming by natural language (via a language model, LowCoderNL)
to help developers of all backgrounds create AI pipelines. We used
LowCoder to provide some of the first insights into whether and
how the integration of visual programming and language models
help programmers by conducting user studies across four tasks with
(NL condition) and without (keyword condition) LowCoderNL.
Overall, LowCoder helped developers compose (85% of tasks)
and iterate (72.5% of tasks) over ML pipelines. Furthermore, Low-
CoderNL helped users discover previously-unknown operators in
75% of tasks, compared to just 22.5% (12.5% in the NL condition and
32.5% in the keyword condition) using web search. Our qualitative
analysis showed that language models helped users discover how
to implement various parts of the pipeline when they know what to

do. However, they failed to support novices when they lacked clar-
ity on what they want to accomplish, which may suggest a worth-
while target for improving AI-based program assistants. Our work
demonstrates the promise of combining both a language model
powered natural language interface and a visual interface for low-
code programming.

8 DATA AVAILABILITY

The implementation of LowCoder, datasets for training and evalu-
ating LowCoderNL, results of additional experiments, as well as
the material from the user study, including the full set of (axial)
codes and anonymized quantitative and qualitative data, are avail-
able at: https://doi.org/10.5281/zenodo.7042296.

REFERENCES

[1] 2021. GitHub Copilot. https://github.com/features/copilot
[2] 2022. ChatGPT. https://openai.com/blog/chatgpt/
[3] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natural Lan-

guage Interfaces to Databases – An Introduction. Natural Language Engineering
1, 1 (1995), 29–81. https://doi.org/10.1017/S135132490000005X

[4] Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, Avraham Shinnar,
and Jason Tsay. 2021. Pipeline Combinators for Gradual AutoML. In Advances in

Neural Information Processing Systems (NeurIPS). https://proceedings.neurips.cc/
paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf

[5] J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architec-
tures. In International Conference on Machine Learning (ICML). I–115–I–123.

[6] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Köt-
ter, Thorsten Meinl, Peter Ohl, Kilian Thiel, and Bernd Wiswedel. 2009. KNIME
- the Konstanz Information Miner: Version 2.0 and Beyond. ACM SIGKDD Ex-

plorations Newsletter 11, 1 (Nov. 2009), 26–31. https://doi.org/10.1145/1656274.
1656280

[7] Marat Boshernitsan and Michael Downes. 2004. Visual Programming Languages:

A Survey. Technical Report UCB/CSD-04-1368. University of California, Berkeley.
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-04-1368.pdf

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Conference on

Neural Information Processing Systems (NeurIPS). 1877–1901. https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping
Distributed Hierarchical Web Data. In Symposium on User Interface Software and

Technology (UIST). 963–975. https://doi.org/10.1145/3242587.3242661
[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared

Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, ClemensWinter, Philippe Tillet, Felipe Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, Will Guss, Alex Nichol, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, Andrew Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter
Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code.
https://arxiv.org/abs/2107.03374

[11] John W. Creswell. 2013. Research design: Qualitative, quantitative, and mixed

methods approaches (4th ed.). SAGE publications.
[12] Janez Demsar, Blaz Zupan, Gregor Leban, and Tomaz Curk. 2004. Orange: From

Experimental Machine Learning to Interactive Data Mining. In European Con-

ference on Principles and Practice of Knowledge Discovery in Databases (PKDD).
537–539. https://doi.org/10.1007/978-3-540-30116-5_58

[13] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark
Marron, Sailesh R, and Subhajit Roy. 2016. Program Synthesis Using Natural
Language. In International Conference on Software Engineering (ICSE). 345–356.
https://doi.org/10.1145/2884781.2884786

[14] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

https://doi.org/10.5281/zenodo.7042296
https://github.com/features/copilot
https://openai.com/blog/chatgpt/
https://doi.org/10.1017/S135132490000005X
https://proceedings.neurips.cc/paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a3b36cb25e2e0b93b5f334ffb4e4064e-Paper.pdf
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-04-1368.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3242587.3242661
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-540-30116-5_58
https://doi.org/10.1145/2884781.2884786
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Conference on

Empirical Methods in Natural Language Processing (EMNLP). 1536–1547. https:
//aclanthology.org/2020.findings-emnlp.139/

[16] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.
In Conference on Neural Information Processing Systems (NIPS). 2962–2970. http:
//papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning

[17] D Randy Garrison, Martha Cleveland-Innes, Marguerite Koole, and James Kap-
pelman. 2006. Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability. The Internet and Higher Education 9, 1 (2006), 1–8.

[18] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explorations Newsletter 11, 1 (Nov. 2009), 10–18. http://doi.acm.org/10.1145/
1656274.1656278

[19] C Hill, R Bellamy, T Erickson, and M Burnett. 2016. Trials and tribulations of
developers of intelligent systems: A field study. In Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). 162–170.
[20] Martin Hirzel. 2023. Low-Code Programming Models. Communications of the

ACM (CACM) 66, 10 (Oct. 2023), 76–85. https://doi.org/10.1145/3587691
[21] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[22] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In Symposium on Visual Languages – Human

Centric Computing (VL/HCC). https://doi.org/10.1109/VLHCC.2004.47
[23] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomM. Mitchell,

and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Symposium on

User Interface Software and Technology (UIST). 577–589. https://doi.org/10.1145/
3332165.3347899

[24] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. ArXiv abs/2102.04664 (2021).

[25] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. A Conversational Paradigm for Program
Synthesis. https://arxiv.org/abs/2203.13474

[26] Randal S. Olson and Jason H. Moore. 2016. TPOT: A Tree-based Pipeline Op-
timization Tool for Automating Machine Learning. In Workshop on Automatic

Machine Learning (AutoML). 66–74. https://proceedings.mlr.press/v64/olson_
tpot_2016.html

[27] Erik Pasternak, Rachel Fenichel, and Andrew N. Marshall. 2017. Tips for Creating
a Block Language with Blockly. In Blocks and Beyond Workshop (B&B). https:
//doi.org/10.1109/BLOCKS.2017.8120404

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[29] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. 2016. Foundations of JSON Schema. In International Conference on World

Wide Web (WWW). 263–273. https://doi.org/10.1145/2872427.2883029
[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and

Ilya Sutskever. 2018. Language Models are Unsupervised Multitask Learners.
(2018). https://d4mucfpksywv.cloudfront.net/better-language-models/language-
models.pdf

[31] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Communi-

cations of the ACM (CACM) 52, 11 (Nov. 2009), 60–67. https://doi.org/10.1145/
1592761.1592779

[32] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pieranto-
nio. 2020. Supporting the understanding and comparison of low-code develop-
ment platforms. In Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). 171–178. https://doi.org/10.1109/SEAA51224.2020.00036
[33] Steven L. Tanimoto. 2013. A perspective on the evolution of live programming.

In International Workshop on Live Programming (LIVE). 31–34. https://doi.org/10.
1109/LIVE.2013.6617346

[34] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Conference on Knowledge Discovery and Data Mining

(KDD). 847–855. https://doi.org/10.1145/2487575.2487629
[35] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation

vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Conference on Human Factors in Computing Systems

(CHI). Article 332. https://doi.org/10.1145/3491101.3519665
[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems (NeurIPS).

[37] Mandana Vaziri, Louis Mandel, Avraham Shinnar, Jérôme Siméon, and Martin
Hirzel. 2017. Generating Chat Bots from Web API Specifications. In Symposium

on New Ideas, New Paradigms, and Reflections on Programming and Software

(Onward!). 44–57. http://doi.acm.org/10.1145/3133850.3133864
[38] Markus Voelter and Sascha Lisson. 2014. Supporting Diverse Notations in MPS’

Projectional Editor.. In Workshop on The Globalization of Modeling Languages

(GEMOC). 7–16. https://hal.inria.fr/hal-01074602/file/GEMOC2014-complete.
pdf#page=13

[39] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. 2019. How does Machine
Learning Change Software Development Practices? Transactions on Software

Engineering (TSE) (2019). https://doi.org/10.1109/TSE.2019.2937083
[40] Dakuo Wang, Justin D. Weisz, Michael Muller, Parikshit Ram, Werner Geyer,

Casey Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019. Human-
AI Collaboration in Data Science: Exploring Data Scientists’ Perceptions of Auto-
mated AI. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 211 (nov 2019),
24 pages. https://doi.org/10.1145/3359313

[41] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a semantic parser
overnight. In Annual Meeting of the Association for Computational Linguistics

(ACL). 1332–1342. https://www.aclweb.org/anthology/P15-1129.pdf
[42] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Conference on Empirical Methods in Natural Language

Processing (EMNLP). 8696–8708. https://aclanthology.org/2021.emnlp-main.685/
[43] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE Code Gen-

eration from Natural Language: Promise and Challenges. ACM Transactions

on Software Engineering and Methodology (TOSEM) 31, 2, Article 29 (mar 2022).
https://doi.org/10.1145/3487569

A TASK FORMULATIONS

Table 4 contains additional examples of NL queries and the corre-
sponding code based on the task formulation.

B ADDITIONAL DETAILS ABOUT THE DATA

We find that the NL query corresponds to a single sklearn operator
invocation in the code cell in 62% of the data, whereas in the re-
maining 38% it has multiple sklearn operator invocation statements.
Table 5 shows the distribution of hyper-parameters in hybrid op-
erator invocations, based on whether the hyper-parameters were
named, and whether the hyper-parameter values were masked or
valued (based on whether they appear in the NL query).

C DECODING TECHNIQUES

We experiment with different decoding techniques to generate our
output hybrid operation invocation sequence. We describe them
below:

(i) Greedy decoding: At each time step, greedy decoding
chooses the token with the highest conditional probability.
Since the model weights are fixed, the output is deterministic,
always yielding the same generation for a given prompt. We
use this to generate a single output sequence.

(ii) Top K sampling: At each time step, only consider the top 𝑘
most probable tokens (according to the model). Renormalize
their probabilities and select a token corresponding to these
probabilities. The output of this approach is no longer deter-
ministic, but instead explores multiple, predominantly high-
probability, completion paths. For our experiments, we set
the value of 𝑘 to 5 and generate a total of 5 output sequences.

(iii) Nucleus sampling: Nucleus sampling is similar to top 𝑘

sampling, but rather than fixing the number ofmost-probable
tokens to consider at each time step, it samples a variable

https://aclanthology.org/2020.findings-emnlp.139/
https://aclanthology.org/2020.findings-emnlp.139/
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
https://doi.org/10.1145/3587691
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3332165.3347899
https://arxiv.org/abs/2203.13474
https://proceedings.mlr.press/v64/olson_tpot_2016.html
https://proceedings.mlr.press/v64/olson_tpot_2016.html
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1145/2872427.2883029
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1109/LIVE.2013.6617346
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/3491101.3519665
http://doi.acm.org/10.1145/3133850.3133864
https://hal.inria.fr/hal-01074602/file/GEMOC2014-complete.pdf#page=13
https://hal.inria.fr/hal-01074602/file/GEMOC2014-complete.pdf#page=13
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1145/3359313
https://www.aclweb.org/anthology/P15-1129.pdf
https://aclanthology.org/2021.emnlp-main.685/
https://doi.org/10.1145/3487569

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

Table 4: Examples of NL-Code pairs for different task formulations.

NL query Operator Name

Complete

Operator Invocation

Masked

Operator Invocation

Hybrid

Operator Invocation

Split X, y data
into training set
and testing set

train_test_split train_test_split(X, y,
test_size=0.2)

train_test_split(MASK,
MASK, test_size=MASK)

train_test_split(X, y,
test_size=MASK)

PCA with 2 com-
ponents

PCA PCA (n_components=2, ran-
dom_state=42)

PCA
(n_components=MASK, ran-
dom_state=MASK)

PCA (n_components=2, ran-
dom_state=MASK)

Replace missing
data with the
mean value

SimpleImputer SimpleImputer
(strategy=‘mean’)

SimpleImputer
(strategy=MASK)

SimpleImputer
(strategy=‘mean’)

Encoding categor-
ical features

OneHotEncoder OneHotEncoder() OneHotEncoder() OneHotEncoder()

Standardisation
of Data

StandardScaler StandardScaler() StandardScaler() StandardScaler()

K-Means with 4
clusters

KMeans KMeans (n_clusters=4, ran-
dom_state=42)

KMeans (n_clusters=MASK,
random_state=MASK)

KMeans(n_clusters=4, ran-
dom_state=MASK)

Build Deci-
sion Tree with
max_depth = 7

DecisionTreeClassifier DecisionTreeClassifier (cri-
terion=‘gini’, max_depth=7)

DecisionTreeClassifier
(criterion=MASK,
max_depth=MASK)

DecisionTreeClassifier
(criterion=MASK,
max_depth=7)

Random forest
with balanced
class weight

RandomForestClassifier RandomForestClassifier
(n_estimators=100,
class_weight=‘balanced’)

RandomForestClassifier
(n_estimators=MASK,
class_weight=MASK)

RandomForestClassifier
(n_estimators=MASK,
class_weight=‘balanced’)

Table 5: Distribution of hyper-parameters in hybrid operator

invocations.

Parameter Type

Distribution of Parameters (%)

0 1-3 4+

Total 18.49 61.51 19.99
Named 54.82 39.16 6.01
Masked 18.99 61.61 19.39
Valued 96.97 3.02 0.01

number of tokens whose cumulative conditional probabili-
ties reaches or exceeds a defined probability (𝑝) value.2 In
contexts where just one or two tokens are highly probable
or where many tokens are similarly plausible, this allows
the model to switch between sampling more greedily or uni-
formly respectively. Once the samples are chosen, the prob-
abilities are again redistributed among them and a token is
selected according to these probabilities. In our experiments,
we set the 𝑝 value to be 0.9 and generate a total of 5 output
sequences.

D MODELING RESULTS

We benchmark the performance of all the models and record the
inference time across several different variables in Table 6, namely:

(i) Learning strategy:we look at three different learning strate-
gies for training the models, which include: training a se-
quence to sequence Transformer from scratch, fine-tuning a
CodeT5 model, and few-shot prompting CodeGen, a large
language model.

2This approach is also called “top-𝑝 sampling".

(ii) Model size:we compare a range of sizes for both the CodeT5
and CodeGen models.

(iii) Decoding: we compare the different decoding strategies
that include, greedy (top-1), topk (top-5) and nucleus (top-5).

(iv) Tool supported operations: Recall that since sklearn
pipelines can only contain operators but not functions, Low-
Coder only exposes blocks for operators. Therefore, we also
contrast the performance of the model on all the test data
points (total of 7,351 samples) along with a filtered set of
test data points that only include operators supported by the
tool (resulting in 3,941 samples).

We also perform additional experiments in an effort to reduce
the inference time of the fine-tuned CodeT5 model with top-5 de-
coding for integration with the tool. We reduce the output sequence
length from 512 tokens to 64 and find a negligible decline in accu-
racy (73.20% for 512 tokens vs. 72.81% for 64 tokens) with signifi-
cantly lower inference time (2.37s vs. 1.56s per sample). Note that
the inference time is not proportional to the number of tokens as
the model learns to stop generating new tokens when it hits the
end token.

E ANNOTATION GUIDELINES FOR REAL

USER DATA

Two authors manually annotate the real user data by looking at
the NL query and the predictions returned by LowCoderNL. More
specifically, we look at the following criteria during annotation
(multiple annotations are possible per query):

• Accurate prediction: At least one of the predictions returned
by the model matches the inferred user intent in the query.
Inferred intent was determined by annotator domain knowl-
edge.

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

Table 6: Accuracy scores for Hybrid Operator Invocation task across different model variations (*due to memory constraints)

Model Size Decoding

Test notebooks

Time

Accuracy in k (%)

OpName OpInvocation

(s) all tool all tool

Transformer 6 layers
greedy (n=1) 0.20 43.23 47.39 16.81 14.13
topK (n=5) 1.11 60.13 63.74 29.16 28.21

nucleus (n=5) 1.21 59.62 62.47 29.99 27.88

Fine-tuned CodeT5

small
greedy (n=1) 0.76 57.43 64.19 23.88 21.44
topK (n=5) 1.09 71.78 77.01 38.86 39.25

nucleus (n=5) 1.52 71.20 76.50 39.57 39.81

base
greedy (n=1) 1.55 59.37 65.66 25.84 23.97
topK (n=5) 2.37 73.20 78.07 40.04 39.93

nucleus (n=5) 3.15 73.35 77.94 41.19 40.97

large
greedy (n=1) 3.66 60.01 64.96 26.90 24.56
topK (n=5) 5.89 73.57 77.47 41.27 40.73

nucleus (n=5) 6.50 73.22 77.16 40.27 39.63

CodeGen

350M
greedy (n=1) 4.39 19.65 25.09 1.94 3.35
topK (n=5) 5.05 46.02 57.59 9.66 15.25

nucleus (n=5) 5.42 43.85 55.16 9.65 15.19

2.7B
greedy (n=1) 6.52 22.67 30.55 2.41 4.21
topK (n=5) 8.59 48.63 60.62 9.48 15.81

nucleus (n=5) 9.56 47.33 59.27 9.31 15.20

6.1B greedy (n=1) 8.09 26.01 35.70 3.51 6.06
topK (n=5) 10.24 49.79 61.94 11.32 17.94

nucleus (n=5) 10.43 48.35 60.39 11.03 17.20

16.1B greedy (n=1) 10.99 24.60 34.66 3.44 5.40
topK (n=3*) 14.27 43.27 55.41 9.73 13.98

nucleus (n=3*) 14.25 41.34 53.89 10.01 14.62

• NL unclear: The NL query is unclear (e.g. “empty”, “numbers”,
“variable”) when neither annotator could infer the intent
from the query alone.

• Partially correct: The predictions are partially correct. This
usually happened if the NL query requests multiple oper-
ators or intents such as “normalize features and run linear

regression”.
• Not supported by tool: The NL query requests targeted ac-
tions that are not supported by the sklearn.

• No output returned by model: These are the cases where the
model fails to return any usable predictions.

Table 7 has the distribution of data per task for all the different
properties we look at when manually annotating the real user data.

F MODEL EVALUATION ON REAL USER DATA

We evaluate the performance of LowCoderNL on the annotated
real user data. Here is a summary of the findings:

• Total accuracy = 150/218 = 68.80%
• Percentage of data where the NL query is clear = 178/218 =
81.65%

• Percentage of data where the NL query is not clear = 40/218
= 18.35%

• Accuracy of model when the NL query is clear = 145/178 =
81.46%

• Accuracy of model when the operator is supported by tool
= 141/185 = 70.81%

• Accuracy of model when the NL query is clear and operator
is supported by tool = 137/152 = 90.13%

G USER STUDY RESULTS

The following is the full listing of codes and axial codes from the
qualitative analysis, broken down by high-level category (which
corresponds to 1st level axial codes): 1) Discovery (Table 8), Itera-
tive Composition (Table 9), Challenges (Table 10), and Feedback (Ta-
ble 11).

AI for Low-Code for AI IUI ’24, March 18–21, 2024, Greenville, SC, USA

Table 7: Distribution of various properties annotated manually for real user data.

Task Total Accurate prediction NL unclear Partially correct Not supported by tool No output returned
A 43 30 5 3 3 0
B 41 27 4 7 16 3
C 53 38 9 3 6 4
D 81 55 22 11 8 6
All 218 150 40 24 33 13

Table 8: Full codes and axial codes from qualitative analysis for Discovery category.

1st Level Axial 2nd Level Axial Code Participant Count (20)

Discovery Know "What" Not "How" Discovered operator they didn’t know about using NL 16
Discovery Know "What" Not "How" Discovered useful operator by browsing toolbox 7
Discovery Know "What" Not "How" Google error message to find solution 1
Discovery Know "What" Not "How" Google for how to do something find general term to use in tool 13
Discovery Know "What" Not "How" Keyword result does not match what they want 5
Discovery Know "What" Not "How" Liked NLP version 13
Discovery Know "What" Not "How" NL search using ML terms 6
Discovery Know "What" Not "How" Scrolling through toolbox for something they recognize or relevant name 10
Discovery Know "What" Not "How" Search same as hint 1
Discovery Know "What" and "How" Keyword close to operator name but not exact match 6
Discovery Know "What" and "How" Keyword search using ML term 10
Discovery Know "What" and "How" Searched for exact operator name 14

Table 9: Full codes and axial codes from qualitative analysis for Iterative Composition category.

1st Level Axial 2nd Level Axial 3rd Level Axial Code Participant Count (20)

Iterative Composition Exploratory General Liked visual blocks 5
Iterative Composition Exploratory General Used score to determine how to refine 14
Iterative Composition Exploratory Random Randomly refining data processing 9
Iterative Composition Exploratory Random Randomly refining hyperparameters 4
Iterative Composition Exploratory Random Randomly refining model 14
Iterative Composition Exploratory Random Randomly scroll through toolbox 17
Iterative Composition Exploratory Random Searched for exact operator name 1
Iterative Composition Exploratory Random Unclear goal but pipeline worked 4
Iterative Composition Targeted Google for hyperparameter values 4
Iterative Composition Targeted Intentionally refine model 5
Iterative Composition Targeted Intentionally refine preprocessing 5
Iterative Composition Targeted Intentionally tuning hyperparameters 10
Iterative Composition Targeted Liked hyperparameter pane 2
Iterative Composition Targeted Made use of data tables in task 14
Iterative Composition Targeted Noticed error message 10
Iterative Composition Targeted Used canvas to store blocks 4
Iterative Composition Targeted Used score to determine how to refine 1
Iterative Composition Seeking Documentation Google for operator documentation 6
Iterative Composition Seeking Documentation Hard to figure out what operator does 10
Iterative Composition Seeking Documentation Hover over hyperparameters to learn more 6

IUI ’24, March 18–21, 2024, Greenville, SC, USA N. Rao, J. Tsay, K. Kate, V. J. Hellendoorn, and M. Hirzel

Table 10: Full codes and axial codes from qualitative analysis for Challenges category.

1st Level Axial 2nd Level Axial 3rd Level Axial Code Participant Count (20)

Challenges General Gave up on task 3
Challenges General Ignoring/misinterpreting error messages 4
Challenges General Needed nudge to do something 8
Challenges General Task clarification 3
Challenges Not Knowing "What" Did not know “what” they wanted to do 11
Challenges Not Knowing "What" Learning effect - used exact same operator/pipeline as previous task 8
Challenges Not Knowing "What" Nudge to prevent invalid pipeline 2
Challenges Not Knowing "What" Tool easier to use when knowing "what" to do 3
Challenges Not Knowing "What" Unfamiliar with aspect of scikit-learn or machine learning 4
Challenges Not Knowing "What" Used operator that did not work as intended 4
Challenges Discovery General Knew "what" they wanted to do but did not know the term 15
Challenges Discovery General Overwhelmed by choices 2
Challenges Discovery Google Search Chose not to Google search 3
Challenges Discovery Google Search Google didn’t help find sklearn operator (found pandas/numpy solution) 5
Challenges Discovery Google Search Google something at a very high level "classification/preprocessing" 6
Challenges Discovery Google Search Google something but not able to parse results 10
Challenges Discovery Google Search Had difficulty articulating Google search 3
Challenges Discovery Tool Search Had difficulty articulating search inside tool 5
Challenges Discovery Tool Search NL returned unsupported operator 9
Challenges Discovery Tool Search NL search is unclear or vague 10
Challenges Discovery Tool Search Needed specific vocabulary 8
Challenges Discovery Tool Search No results from keyword filter 9
Challenges Discovery Tool Search No results returned from NLP 3
Challenges Tool Functionality Did not understand aspect of tool 5
Challenges Tool Functionality Didn’t use certain tool features 6
Challenges Tool Functionality Learning curve required for tool 3
Challenges Tool Functionality NLP returned wrong results 8
Challenges Tool Functionality Non-deterministic results from NL search 2
Challenges Tool Functionality Non-deterministic scoring 4
Challenges Tool Functionality Problem with tool 4
Challenges Tool Functionality They didn’t understand what NL search really did 5
Challenges Tool Functionality Wanted to do something tool doesn’t support 11

Table 11: Full codes and axial codes from qualitative analysis for Feedback category.

1st Level Axial Code Participant Count (20)

Feedback Comparison with other tool 4
Feedback Did not like NLP version 3
Feedback Did not like some feature of the tool 6
Feedback Do not like keyword version 2
Feedback Liked data table feature 8
Feedback Liked feature of tool 12
Feedback Liked keyword version 6
Feedback No preference between keyword and NLP 2
Feedback Suggestion for tool 13
Feedback Wanted both NL and keyword 3

	Abstract
	1 Introduction
	2 Related Work
	3 LOW-CODE FOR AI: LowCoder TOOL DESIGN
	3.1 Visual Programming Interface
	3.2 Natural Language Interface

	4 AI for Low-Code: Using Language Models for Low-Code
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Tasks
	4.4 Modeling

	5 Evaluation
	5.1 Modeling
	5.2 User Study

	6 Reflection of Practical and Societal Impact
	7 Conclusion
	8 Data Availability
	References
	A Task formulations
	B Additional details about the data
	C Decoding Techniques
	D Modeling Results
	E Annotation guidelines for real user data
	F Model evaluation on real user data
	G User Study Results

