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Abstract
While artificial intelligence (AI) models have improved at understanding large-scale data,
understanding AI models themselves at any scale is difficult. For example, even two mod-
els that implement the same network architecture may differ in frameworks, datasets, or
even domains. Furthermore, attempting to use either model often requires much manual
effort to understand it. As software engineering and AI development share many of the
same languages and tools, techniques in mining software repositories should enable more
scalable insights into AI models and AI development. However, much of the relevant meta-
data around models are not easily extractable. This paper (an extension of our MSR 2020
paper) presents a library called AIMMX for AI Model Metadata eXtraction from software
repositories into enhanced metadata that conforms to a flexible metadata schema. We eval-
uated AIMMX against 7,998 open-source models from three sources: model zoos, arXiv
AI papers, and state-of-the-art AI papers. We also explored how AIMMX can enable stud-
ies and tools to advance engineering support for AI development. As preliminary examples,
we present an exploratory analysis for data and method reproducibility over the models in
the evaluation dataset and a catalog tool for discovering and managing models. We also
demonstrate the flexibility of extracted metadata by using the evaluation dataset in an exist-
ing natural language processing (NLP) analysis platform to identify trends in the dataset.
Overall, we hope AIMMX fosters research towards better AI development.

Keywords Artificial intelligence · Machine learning · Mining software repositories ·
Model mining · Model metadata · Model catalog · Metadata extraction

1 Introduction

Despite recent advances, AI as an engineering practice is still in its early stages with often
unpredictable and costly results (both in terms of time and quality) (Hill et al. 2016) that are
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often difficult to reproduce (Gundersen and Kjensmo 2017). The sheer amount of possible
AI approaches and algorithms (Wan et al. 2019) and recent increase in released AI frame-
works (Braiek et al. 2018) result in a large variety of AI models and representations. For
this paper, we define an AI model as all the software and data artifacts needed to specify the
statistical model for a given task, train its learnable coefficients, and/or deploy the trained
model for prediction in a service or application. Our definition of model includes both tra-
ditional machine learning (ML) and deep learning (DL) models. The sheer variety and lack
of standardization in AI development results in models that are difficult to interact with and
reason across at scale. For example, even if two models use the same AI framework, they
may be in very different domains such as Vision or Natural Language Processing (NLP) or
use different algorithms or datasets. Even when a model’s code is available, often using or
understanding this model requires much manual effort, sometimes even requiring reading
associated papers. This is a barrier for non-experts and hinders mass adoption. We propose
that mining standardized model metadata will reduce this manual effort. We then propose
that further enhancing the extracted metadata with AI model-specific information enables
programmatically analyzing or interacting with models at scale.

One avenue for standardization is that software and AI development share many of the
same languages and tools, such as version control systems. Existing software repository
tools and services, such as GitHub, are popular with AI developers to store model definition
code and development artifacts such as configurations and training logs. In fact, software
repositories are popular methods for disseminating examples of models for these frame-
works, such as model zoos that collect models for a given framework. Enterprise AI systems
also commonly use versioning systems meant for software to store both AI and non-AI
components (Amershi et al. 2019). One possibility is that existing software repository min-
ing techniques such as software analytics techniques (Menzies and Zimmermann 2013) or
bug prediction techniques (Ostrand et al. 2005; Graves et al. 2000) can be adapted or reused
for AI development. However, developing (and mining) AI models presents additional chal-
lenges over traditional software engineering. AI development often requires managing many
model-specific components that are entangled (Amershi et al. 2019; Sculley et al. 2015),
such as code, data, preprocessing, and hyperparameters. The tools that support software
development, such as version control systems, tend to not support representing these entan-
gled components. We expect that mining the repositories of AI models will give insight into
AI development, but often information about these components is not directly accessible.
For example, an image classification model often contains code that defines the model but
information such as the dataset used, papers referred to, and even the domain of the model
is absent or buried in documentation.

We present a library called AIMMX (AI Model Metadata eXtractor) for simplified and
standardized mining of AI model-specific metadata from software repositories. The extrac-
tors take existing software repositories containing AI models, and integrate data from
multiple sources, such as documentation, Python code, model definition files, etc. Our
extractors integrate this data for AI model-specific metadata. Integration also enables further
enhancement via inferring additional model-specific metadata that is not easily available
directly from software repositories. The extraction library contains six main modules to
extract model-specific metadata: model name, paper references, dataset, AI frameworks,
model domain, and ML vs DL. Additionally, the library includes a gatekeeper module
that infers whether a given repository contains an AI model. Further, the library uses the
extracted metadata to infer additional signals called readiness metrics that indicate how
close a given model is to trainability or deployability. The inference modules such as AI,
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domain, and ML vs DL use machine learning themselves to automatically infer properties
of the model. To standardize the extracted metadata, we also provide an AI model meta-
data schema based on model-related steps of the AI development lifecycle (Amershi et al.
2019): model definition, training, and post-training. In contrast to other model metadata
efforts such as ONNX (ONNX 2017), PMML (Guazzelli et al. 2009), and PFA (Pivarski
et al. 2016) that focus on defining the model’s low-level computational graph, our meta-
data schema and mining library are more concerned with higher-level questions such as the
domain or which datasets were used to train a given model or how to use a given model
rather than model definition specifics such as the topology of the neural network the model
uses.

Extracting metadata in a standardized way is useful for furthering engineering support
for AI development. Metadata enables large-scale analysis and tools in research and practice
that manage multiple varying models. We evaluate AIMMX and demonstrate its capabili-
ties by collecting and analyzing 7,998 models from public software repositories from three
sources: 1) 284 “model zoo” example repositories, 2) 3,409 repositories extracted from AI-
related papers, and 3) 4,324 repositories associated with state-of-the-art AI models. After
extraction, the metadata is ready for consumption in both machine-readable and human-
readable views. Using a subset of this dataset, we created test sets and evaluations for each
of our five extraction modules and readiness metrics as mentioned above as well as a holis-
tic evaluation of the entire system. The automatically extracted metadata have an average
precision of 85% and recall of 82%. The evaluation dataset is available as part of the repli-
cation package. Figure 1 gives an overview of the model metadata mining system, dataset
collected, and preliminary usage of the extracted metadata.

We demonstrate the capabilities of mining a large collection of AI model metadata by
using the enhanced metadata to perform an exploratory analysis of reproducibility, a sup-
plementary analysis using an existing natural language processing (NLP) analysis platform
called Watson Discovery (IBM 2020), and an example model catalog tool. Reproducibility

Fig. 1 Overview of AI model metadata mining system
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in AI papers (Gundersen and Kjensmo 2017) and Jupyter Notebooks (Pimentel et al. 2019)
tends to be relatively poor, due to a lack of documentation over method selection, datasets
used, or experiments run. We quantitatively examine our enhanced metadata dataset of 7,998
models for signals of both data (datasets used for an AI model) and method (algorithms
and design decisions for an AI model) reproducibility (Gundersen and Kjensmo 2017). Our
exploratory analysis found that data reproducibility tends to be relatively low at 42% of
models in our sample having extractable information about datasets used. Method repro-
ducibility, proxied by extracted references, is higher than data reproducibility at 72% of
models in our sample, with state-of-the-art models being particularly high at 92%. As a
demonstration of the versatility of our standardized metadata, we feed the 7,998 documents
in the dataset into an existing NLP analysis platform and examine trends in our dataset using
the platform. As an example of a tool that leverages extracted metadata, we also describe an
implementation of a searchable catalog that uses metadata to manage discovering and evalu-
ating collected models. The system is scalable for cataloging thousands of models, allowing
model producers to add their own models in a manner that imposes minimal burden due
to AIMMX enabling automated metadata extraction. In contrast, other model management
systems such as ModelDB (Vartak et al. 2016) require that model producers instrument their
code to support automatic model ingestion. Using AIMMX’s extracted metadata in a cata-
log provides automatic connections between code, datasets, and references which is similar
to the manual connections in the Papers With Code website (Code 2020). These connections
may also enable automated training or deployment in future tools.

This paper is an extension of our previous work (Tsay et al. 2020) presented at the 17th
International Conference on Mining Software Repositories (MSR 2020) which describes an
earlier version of AIMMX and a portion of the features, evaluation, and analyses described
in this paper. As part of the extension, this version of the paper describes the model meta-
data schema in detail. This version also includes three new library modules: 1) a gatekeeper
that uses machine learning to identify whether a given repository is an AI model, 2) a classi-
fier that uses machine learning to infer if a model uses traditional machine learning or deep
learning, and 3) an aggregator that uses extracted metadata to infer readiness for a given
model. Each of these modules also includes an accompanying individual evaluation; the
overall system evaluation has also been updated. This version also demonstrates the flexibil-
ity of our extracted metadata format with an additional analysis of trends using an existing
NLP analysis platform called Watson Discovery. Finally, this version more fully describes
the implementation of the cataloging tool.

This paper makes the following contributions:

– A standardized AI model metadata schema that covers a wide range of model types,
domains, and lifecycle phases (Section 2).

– A tool for extracting standardized AI model-specific metadata from software reposito-
ries with currently eight extraction modules (Section 3).

– An evaluation of our tool against a dataset of 7,998 models (Section 4). This AI model
metadata dataset is also available as part of a replication package.

– Preliminary usage of extracted metadata via an exploratory analysis of the data and
method reproducibility of AI models in our dataset and using an existing NLP platform
(Section 5) and a cataloging tool (Section 6).

All in all, we hope our paper will facilitate research into AI development, with the
ultimate goal of increasing productivity and improving outcomes.
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2 Model Metadata Schema

AI models are diverse, and any attempt to extract standardized information about them must
start with establishing a metadata schema to describe these models and where they come
from. The diversity of AI models spans dimensions such as domain, lifecycle stage, source,
dataset, framework, and so on, where each dimension may significantly affect what a model
does and how to use it (Sculley et al. 2015). Our schema takes a model lifecycle-based
approach, describing models based on what is known about each lifecycle stage. At a high
level, models go through the following lifecycle: pre-training (which includes defining the
code or network for a model and for any pre-processing), training (using the definition to
learn weights and biases from a training dataset), and post-training (the weights and biases
that support making predictions integratable into other applications). The actions that are
available on a model are completely different depending on its lifecycle stage. For example,
although the TensorFlow and Caffe2 model zoos (see Table 1) both contain ResNet-based
models (He et al. 2016), the TensorFlow version is simply code that must undergo training
whereas the Caffe2 version is a post-trained binary. Despite both models being from model
zoos and having the same topology, domain, and purpose, the actions available and therefore
metadata that must be collected differ.

2.1 Schema Description

The model metadata schema consists of a top-level model object with discovery attributes
such as model name, domain, references, and so on as well as a number of subob-
jects that correspond to stages of the model lifecycle: (pre-training), , and

. There are also subobjects to describe such as training metrics like
accuracy and a model’s . Figure 2 shows an overview of the schema and its sub-
objects. Note that any given model may have any or none of these subobjects. Although
one might expect a model to strictly accumulate more information throughout its lifecycle,
in practice, any given model may not have information about earlier stages. For example, a
trained model from the Caffe2 model zoo may not have any pre-training code available and
therefore no subobject. We represent model metadata using JSON, which is the
most popular data exchange format in web APIs, ahead of XML (Rodrı́guez et al. 2016).
Consequently, we express its schema in the JSON Schema language (Internet Engineering
Task Force 2018; Pezoa et al. 2016). Our schema is available for viewing online at https://
ibm.biz/ai-model-catalog-emse-schema.

JSON Schema is a popular JSON-based method of describing and validat-
ing the properties of JSON documents in a standardized way. We use JSON
Schema because it is widely supported and is machine and human-readable. It
supports primitive types (e.g., , enumerations (e.g.,

), arrays (e.g., ), objects
(e.g., ), logi-
cal connectives ( , , , ), and potentially recursive references (e.g.,

) to reusable schema fragments. JSON Schema also has the advan-
tage of being flexible enough to extend to support both relatively complex subobjects and
new features as described below.

The top level of the AIMMX schema contains high-level attributes that are common to
most models regardless of lifecycle stage, such as a model’s name, authors, description, tags,
domain or intended application type, and any related references such as academic papers or

https://ibm.biz/ai-model-catalog-emse-schema
https://ibm.biz/ai-model-catalog-emse-schema
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Fig. 2 Model metadata schema overview

blogs. Finally, the top level also stores extraction metadata, such as where a model comes
from and metrics related to automated mining such as completeness and confidence.

The subobject contains the pre-training metadata for a model. It contains ref-
erences to code that define the model and associated metadata as well as any metadata
needed to train the model. The main attribute is , which contains references to source or
repositories that define the model including information such as the frameworks (e.g. Ten-
sorFlow or Caffe2) and the license (e.g. Apache). The subobject also has schemas defining
the shape of input data, output data, and hyperparameters for the model. These schemas are
each implemented as embedded JSON Schemas that are definable by the user. For exam-
ple, the is a JSON Schema that may define hyperparameters such as

and their shape, such as being an integer with a given minimum and maximum.
The subobject contains information about the training phase of the model, includ-

ing datasets and hyperparameters that are used to train the model. Whereas the
subobject describes metadata that defines the model and how it may be trained, the
subobject describes the specific training configuration. For example, the subobject
contains the hyperparameter schema while the subobject contains actual hyperpa-
rameter values used to train a particular model. Similarly, this subobject contains metadata
about the actual datasets used during training, which includes information such as loca-
tion of the data, train/test/validation splits, and any preprocessing steps. Both datasets and
hyperparameters may be validated against the schemas defined in the subobject.
The subobject also includes information about the training job, such as the service
and/or location and the location of the resulting trained model (but not information about
the resulting trained model itself, which is in the subobject).

The subobject contains post-training information about the model weights
and biases and any metadata to integrate the trained model into software applications or
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model ensembles. The main attribute is , with references and information about
learned weights and biases. We separated the information about the model binary from the

subobject because often, such as in model zoos, there may be information about a
trained model binary but no information available about the training process that creates the
binary. The subobject also contains schema information about input and/or
output data, again using embedded JSON Schemas.

The and subobjects respectively contain evaluation metrics and
history of any transformations applied to a given model. Both subobjects are not used by the
current version of AIMMX but are designed for future extractors. The subobject
is meant for performance metrics such as accuracy from training jobs in the most common
case. However, the schema we define is flexible enough to include annotations for other
subobjects. For example, one may want to evaluate the definition of the data preprocessing
pipeline for bias (Shaikh et al. 2017), or the binaries of the trained model for robustness
against extraction (Tramèr et al. 2016). The subobject is meant to track history
of changes. Using the previous examples, if a more fair or more robust model is derived,
this subobject would contain information about the original model and any transformations
applied.

2.2 Schema Features

While the previous section describes the concrete schema, this section explains how to spec-
ify and validate metadata against it, based on standard JSON Schema (Internet Engineering
Task Force 2018) Draft 04 with some extensions.

Some properties of the metadata schema are actually definitions of how data
should be described. For example, in the subobject is a property called

that describes what hyperparameters the model definition code
expects and potentially the ranges of these values. In the subobject, these hyperpa-
rameters are actually defined. Schemas themselves are a natural fit for describing these types
of properties and are implemented in our system by specifying that the relevant attribute
contains an embedded JSON Schema. Note that this is not an extension to JSON Schema,
but simply an unusual usage. Since the JSON Schema is itself specified (meta-circularly)
using a JSON Schema, it is easy to reference and embed.

As in the above example with the and proper-
ties, user-provided embedded schemas may validate other properties. Conceptually, this is
similar to dependent types (Augustsson 1998) in programming language theory: the type
(schema) for part of the data is given by another part of the data. AIMMX implements this
in a backwards-compatible manner by encoding a special property. This
format is JSON Schema conformant, and so existing validators will ignore it without fail-
ing. The following example encodes that the hyperparameter values in the model metadata
should be checked against the schema embedded elsewhere in the model metadata:
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Using a standardized schema for our schema definition allows for downstream appli-
cations to use standard validators to validate input data against our schema. The catalog
tool described in Section 6 uses the AJV (Ajv 2018) validator. We augment the validator
to support embedded schema validation by first finding all the embedded schema declara-
tions. These are replaced in-memory with a JSON Schema that uses the combinator
to combine the existing schema with an empty hole. A hole map associates dependent
schema paths (for example, ) to a list of holes to fill. Using this mod-
ified schema and hole map, we can now validate data against the schema by first going
through the map and filling the holes in the schema with the corresponding dependent
schema contained in the data. Standard validation then validates the dependent data (for
example, ) against the filled schema, which now includes the corresponding
dependent schema.

3 AutomatedModel Metadata Extraction

The core of AIMMX is a Python library that reads software repositories, specifically from
GitHub (2020), and extracts AI model-related information into standardized model meta-
data in the JSON format that is machine and human readable by following the schema
described in the previous section. This library is open-source at https://github.com/ibm/
aimmx and publicly available for use. AIMMX is meant to be simple to use: once it is
instantiated with a GitHub API key, then the user calls a function with a desired GitHub
URL which then runs the extractors and returns the extracted metadata.

The advantages of choosing to use software repositories and GitHub specifically are
that they are already in common use for AI development (Amershi et al. 2019). For exam-
ple, most major AI-related frameworks such as TensorFlow, PyTorch, and Caffe2 have
public model zoos (collections of example or demonstration models) hosted on GitHub.
Another advantage is that software repositories often document more than just code; for
example, there is a culture of rich documentation through README files that are automat-
ically displayed on GitHub repository pages. Depending on the community, data scientists
often spend extra effort to ensure documentation is updated (Trainer et al. 2015). GitHub
also has a rich Application Programming Interface (API) (GitHub 2016) that enables our
tools to integrate with it in a straightforward manner. The extractor supports three forms
of URLs: full repositories, subfolders within a repository, and individual files in reposito-
ries. For example, whereas the TensorFlow model zoo contains multiple folders with one
model each, the Keras model zoo contains a folder with multiple Python files with one
model each. From the GitHub API, information such as the repository name, description,
tags (topics in GitHub), authors (contributors in GitHub), open source license, primary pro-
gramming language, date of last code commit, number of stargazers for the repository (a
popularity metric similar to Likes in Facebook or Twitter (Dabbish et al. 2012)), and list
of files are directly extractable. Then, the extractor optionally mines additional informa-
tion depending on whether the repository contains certain files such as the README file,
Python code, Python-specific configuration files, and certain types of ML or AI framework-
related binary or configuration files. For example, Caffe2 commonly describes the expected
dimensions for input data in . Our tools extract this information and encode it
in the metadata as an embedded JSON schema in . Specific binary files
are automatically identified and placed into the subobject based on the
file extension (e.g. .pb for Caffe2, .h5 for Keras, .onnx for ONNX), and Dockerfile
for containerized models.

https://github.com/ibm/aimmx
https://github.com/ibm/aimmx
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An issue with using version control systems meant for traditional software is that AI
model-specific metadata are not directly available through repositories or associated code or
configuration files. However, by analyzing the aggregated metadata, model-specific meta-
data can be extracted or inferred. This metadata can then enhance the aggregated metadata
that are more directly extractable from software repositories, code, and configuration files.
The current version of the extractors contains seven such modules: AI identification, model
name, references, associated datasets, AI frameworks used, model domain inference, and
ML vs DL. We also use our existing metadata to infer readiness signals for how close a
model may be to training or deploying.

3.1 AI Model Identification

A surprisingly difficult task when mining software repositories for AI-related code at a
large scale is identifying AI vs non-AI software projects. Gathering software repositories
for mining often involves indiscriminately gathering repositories through means such as
GitHub search or querying GHTorrent (Gousios 2013) or GH Archive (Archive 2021). Even
for the initial development of this library we had difficulty determining which repositories
contained AI models. Hence, we gathered repositories from sources more likely to contain
AI models (see Section 4.1), yielding fewer repositories than indiscriminate methods.

In response to this difficulty, we developed a gatekeeper module that assists in identifying
and filtering out non-AI repositories out of a large indiscriminate set. This module takes
a given repository and attempts to use its metadata to identify if the repository is an AI
model or not. AI-related tools and frameworks are not considered models in this case. For
the current version of this module, we only analyze the contents of the README file.

To create this classifier module, we needed a ground truth dataset of AI and non-AI
repositories. We used the ML-Universe dataset by Gonzalez et al. (2020), which contains
4,524 AI and 4,101 non-AI repositories, identified manually. We only consider repositories
that were available (as of 9/6/2021) with valid README files, since those are used in the
classification. After balancing for AI and non-AI, we have 4,039 valid repositories for each
case in the dataset (8,072 total). This dataset is then split into training and validation sets
with 80% or 6,462 repositories in the training set and 1,616 in the validation set.

For the current version of this module, we take a bag-of-words approach with the input
model metadata. Specifically, only the README is considered but it is stripped of all tags
and special Markdown characters and then tokenized and vectorized. For all 8,072 reposi-
tories in our dataset, we extract the README and preprocess it as described earlier. After
testing a number of classification approaches, we settled on a logistic regression classifier
that outputs a Boolean indicating whether the repository is an AI model or not.

3.2 Model Name Extraction

This module attempts to extract a more descriptive name for a given model from available
metadata. In many cases, the most obvious choice, the repository name, is insufficient or
suboptimal. Models often exist as part of subfolders or individual files within repositories,
especially in “model zoo” collections, which often cannot directly use the repository name.
Also, the repository name is often a nickname or a non-obvious abbreviation. For example, a
repository may be named “hip-mdp-public” but a more descriptive name would be “Robust
and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes.” To
extract more descriptive names, this module uses a rule-based approach to analyze doc-
umentation for potential names. Specifically, the documentation analyzed depends on the
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repository and what is available. If the model is in a repository subfolder, the subfolder’s
README file is used if available. If the model is a specific Python file, the docstring
(documentation comments at the top of the file) is used if available. If the model is a repos-
itory or other files are not available, the repository-level README is analyzed. Once the
documentation to analyze is determined, the README or docstring is iterated line-by-
line, skipping non-relevant items commonly found at the top of README files such as CI
badges, image banners, heading characters (such as *** or ===), and administrative notes
such as “**NOTE: This repo...”. When the first relevant line is found, it is stripped of Mark-
down or HTML characters and any hyperlinks. This cleaned line is returned as a potential
name. If no potential name is found, the repository name is used as a fallback.

3.3 Reference Extraction

We chose to implement a module to extract references to papers because in preliminary user
testing, data scientists tend to discuss models in terms of corresponding academic papers.
This module uses three rule-based approaches to extract references: 1) regular expressions
to search for common reference formats, 2) search for arXiv IDs with correspond lookups
to the arXiv API, and 3) identifying code blocks containing BibTeX references. The first
approach attempts to find a variety of references that may include various conferences or
even blog posts while the second and third approaches attempt to find specific formats that
are popular with machine learning papers. For all three approaches, the module searches
across README files and docstrings using the same rules as the model name module. In
the case of overlapping references found by multiple approaches, the reference with the
most metadata as measured by fields extracted is kept with a preference for the arXiv and
BibTeX approaches over the pattern-matching approach.

The first approach uses nine regular expression patterns to find both references to aca-
demic papers and links to blog posts and other webpages. The patterns were developed by
examining existing references in documentation for repositories in model zoos. The meta-
data returned for this approach varies depending on the pattern. The simplest example is a
blog post which returns only the article title and the URL while a more complicated pattern
may return the title, list of authors, year, arXiv ID, and URL. This approach is the broadest
in terms of what types of references are allowed, as any conference, journal, or blog post
is potentially valid. However, this approach is limited in that only references that match the
patterns defined will be found.

The second approach searches for arXiv papers. ArXiv is a preprint hosting service par-
ticularly popular with academics in AI fields (1991). Specifically, the approach searches for
links to arXiv papers within the given README and then extracts the arXiv ID from the
link. The ID is then looked up against the arXiv API (2018) for additional information such
as the article title, authors, and publishing date. The advantage of this approach is that arXiv
is popular among machine learning researchers and is commonly used. Using the arXiv
API also allows for extracting reference information in a standardized way that is robust to
differing citation styles. The disadvantage of using arXiv is that its references tend to be
preprints and publishing conference or journal information is often lost or unavailable.

The third approach searches for code blocks within the documentation with BibTeX
references. This particular approach relies on searching for code blocks as defined by the
Markdown language that GitHub uses for README files. The entire code block must be a
valid BibTeX reference (it cannot contain anything except BibTeX). Multiple entries in the
code block are allowed. BibTeX seems to be particularly popular to provide a citation to
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a model repository’s associated paper. The advantage of this approach is that BibTeX is a
well-established and precise format.

3.4 Dataset Extraction

Data management is a hard challenge in engineering AI systems (Amershi et al. 2019; Wan
et al. 2019) and models in software repositories often have no formal descriptions of datasets
used. Our module attempts to automatically extract and link models to the datasets used.
For this version, the module extracts the name of the dataset and potentially a link to the
dataset. The module uses two rule-based approaches: searching for links in the README
and searching for references to common datasets. The first approach allows for finding
arbitrary datasets and the second approach allows for finding commonly used datasets in
machine learning papers. The first approach searches the README for links that contain
dataset-related keywords, specifically “dataset”, “data”, and “corpus.” It then returns the
names and the referenced URLs of the extracted dataset. The second approach uses a set of
640 common dataset names and searches for mentions of these datasets in the README.
To avoid partial matching of short dataset names such as “SQuAD” versus “SQuAD2.0,”
matching datasets must be their own token(s) and surrounded by whitespace or punctua-
tion. Longer dataset names such as “Fashion-MNIST” are preferred over shorter ones such
as “MNIST” and are resolved first. If this approach finds a match, then only the dataset
name is returned. For cases where both approaches return the same dataset, such as the
“New York Times Corpus,” the extracted metadata is merged by combining the name and
link. This module follows the same rules to the model name module in determining which
documentation file to analyze.

We extracted the list of common datasets using the Papers With Code website (Code
2020), which compiles machine-learning papers and repositories and metadata that links
the two. In the Papers With Code data,1 there are common machine-learning tasks such as
Language Modeling and Semantic Segmentation. For each task, there is a list of datasets
and a leaderboard for each dataset with associated papers and associated code repositories
for each paper. For example, the Language Modeling task includes the One Billion Word
dataset (Chelba et al. 2013). The module collected each of the datasets for each of the
tasks (as of 8/20/2019), resulting in 640 total dataset names that the module searches for
in the README. Some dataset names were removed to prevent false positives such as
“Datasets.” Since the datasets are known, future work should add additional metadata for
matched datasets. For example, if “MNIST” is matched, then metadata such as where the
dataset is available and the schema could also be made available.

3.5 AI Framework Extraction

AI frameworks play an important part towards enabling the model development process.
Recent years have seen a spike in the release and adoption of AI frameworks (Braiek
et al. 2018) and framework-related questions are a major category of machine learning-
related topics on Stack Overflow (Bangash et al. 2019). Our module identifies which AI
frameworks a particular model uses by searching the source code. We focus on Python AI
frameworks as they are the most popular (Braiek et al. 2018). The module then concatenates
all Python files (.py) and code cells of Jupyter Notebooks (.ipynb) into a single text string.

1At the time of publishing, their data are available under the CC BY-SA license.
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Once all the code is extracted and merged into a single string, a regular expression is used
to find the name of the modules imported, specifically cases of ‘import module name’ and
‘from module name import function name’ and all its variations (like with ‘as nickname’,
multiple modules at the same line, or functions from submodules). The found module names
are then filtered by a fixed list of well-known frameworks such as Caffe, Keras, Lasagne,
MXNet, NLTK, PyTorch (or torch), TensorFlow, Theano, scikit-learn (or sklearn). The only
exception is the Caffe2 framework which is not a Python module. Therefore, we check the
coexistence of the files init net.pb and predict net.pb, and if they exist, we add Caffe2 to the
frameworks list. Table 7 has a full list of AI frameworks for extraction.

3.6 Automated Domain Inference

This module uses machine learning to infer the domain of a given model based on its
available metadata. Here domain refers to the genre or type of activity that the model is
associated with, for example: Computer Vision, Natural Language Processing (NLP), etc.
A general issue with extracting model metadata is that often the domain of a model is not
explicitly defined. However, machine learning practitioners often naturally describe models
by their domain. We use machine learning on a public dataset of model repositories to cre-
ate a machine learning model that takes in model metadata as input, and outputs the model’s
inferred domain and task along with a confidence score.

To create the domain inference model, we created a training and validation dataset of
repositories and their associated domain and task using data from the Papers With Code
website (2020). In this case, domain is a more general category for models whereas task
is a more specific activity within the category. Given the previous example in the datasets
extractor module, in Papers With Code, Natural Language Processing (NLP) is a domain
and Language Modeling is a task within that domain. We use data from Papers With Code
because it provides ground truth for the domains and tasks for model repositories which is
often unavailable otherwise. We use a total of 2,915 repositories labeled with domains and
tasks from Papers With Code along with 300 repositories written in Python that have noth-
ing to do with machine learning as negative examples for a total of 3,215. These negative
examples were manually gathered from GitHub’s most popular Python repositories. This
dataset is then split into training and validation sets with 70% or 2,237 repositories in the
training set and 978 in the validation set. Similar to the AI model identification module,
the current version of this module takes a bag-of-words approach and only considers the
README, preprocessed by stripping all tags and special Markdown characters and then
tokenizing and vectorizing the words.

Through examining the dataset and empirically, we settled on an assembly of support
vector classification models that work in a two-stage process as seen in Fig. 3. The first stage
determines if a given model’s domain is Computer Vision, Natural Language Processing
(NLP), Other, or Unknown (not a model). Depending on the results of the first stage, the
given model is then fed into one of three multiclassification models: 1) Computer Vision
tasks, 2) NLP tasks, or 3) Other domains. The final result is a domain and task, or in the case
of Other domains, just the domain, along with a confidence score. For example, Model A
may be determined to fall under the Computer Vision domain in the first stage and is then fed
into the Computer Vision task model and has Object Detection as the task with a confidence
of 0.68. Model B may be determined to fall under Other domain in the first stage and then is
determined to be in the Medical domain in the second stage with a confidence of 0.72. The
Computer Vision, NLP, and Other domain split was done due to the unbalanced nature of
the ground truth distribution of the dataset. Out of 2,915 labeled model repositories, 1,654
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Fig. 3 Domain inference machine learning model ensemble diagram

(56.7%) are Computer Vision and 824 (28.3%) are NLP. The other domains make up 15% of
the dataset with Playing Games the largest at 171 (5.9%). We chose to group domains into
an “Other” category due to a relatively small number of samples, especially compared to
Computer Vision or NLP. Due to the relatively small number of examples for these models,
we chose not to further predict the task for these domains. Appendix A lists all domains and
tasks inferred.

3.7 Machine Learning/Deep Learning (ML-DL) Inference

An often important distinction within AI models is whether it is a machine learning (ML) or
deep learning (DL) model. In this case, although DL is a sub-category of ML, we refer to ML
models as “traditional” machine learning models that do not use deep learning techniques
such as neural networks. This module uses machine learning to infer whether a given AI
model is ML or DL. We train the classification model for this module using the IBM Natural
Language Understanding2 service that analyzes text to extract metadata from content such
as concepts, entities, emotion, relations, sentiment among others, as well as the ability to
train a custom classification model.

To create the dataset to train and evaluate this module, we use a dataset of GitHub projects
and use GitHub topics to categorize repositories as either ML or DL. We used an open-
source GitHub crawler3 to gather 3,000 ML and DL repositories each. To determine which
category each repository belongs to, we filter via GitHub topics: ML repositories must have

but not as topics and DL repositories must have
but not . Out of these two mutually exclusive sets of repositories, we gather
3,000 each with the most stars and with valid README files. We applied the same cleanup
to README files as discussed earlier to get plain-text versions. We also removed files with
fewer than 500 characters and trimmed each text to the first 2,000 characters, which is the
maximum length of a sample for the IBM NLU service. After this preprocessing, our dataset
has 2,716 ML repositories and 2,802 DL repositories. We then create a training set with the

2https://cloud.ibm.com/catalog/services/natural-language-understanding
3https://github.com/IBM/github-crawler

https://cloud.ibm.com/catalog/services/natural-language-understanding
https://github.com/IBM/github-crawler
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top 2,000 repositories of each category in terms of star count, resulting in a balanced dataset
with a total of 4,000 samples. We create a test set with the next 500 repositories of each
category for a total of 1,000 samples.

We then use the NLU service to train a custom classifier model using the classification
endpoint. The service also provides an analyze endpoint to predict ML/DL classification
given a cleaned README file from a given repository. Our module then uses this endpoint
to infer ML/DL.

3.8 Readiness Metrics

AIMMX also aggregates the extracted metadata to further infer additional signals about a
given AI model. In particular, since much of our metadata is extracted from documenta-
tion, we expect that we should be able to infer how ready to reuse a given model is. We
call these inferred signals readiness metrics and the current version of AIMMX calculates

and metrics for how close a model is to a trainable or deployable
state. “Trainable” in this case refers to the feasibility of running a training job on a given
model which may include acquiring the dataset, formatting and cleaning the dataset, gen-
erating features, and running the training script. “Deployable” refers to feasibly running
prediction or inference on a trained model for some unseen data (rather than just running a
test set).

As described in Section 2.1, our metadata schema follows a lifecycle approach where we
group relevant metadata via subobjects that correspond to stages in the model’s lifecycle.
For example, extracted metadata about datasets used is under the subobject because
it is relevant metadata about running a training job. We make use of these lifecycle subob-
jects to approximate what stage of the lifecycle a given model is. In the current version of
our system, we calculate trainability as the percentage of defined properties in the
and lifecycle subobjects of the metadata. Deployability is similarly defined as the
percent of properties defined in the lifecycle subobject. For example, after
extracting metadata for a given project, that project may have code repository, AI frame-
work, code files, and dataset metadata in its metadata document. These properties being
defined comprise 50% of the and subobjects in our schema which then is a

metric of 50%. Adding additional relevant metadata such as the hyperparameter
schema would raise the value further. This percentage approach to calculating the metrics
has an advantage of being inherently normalized because it relies on presence of properties
rather than values. These measures are used in analyses to give a sense of the relative com-
pleteness of the model and the catalog tool described later uses them to recommend steps
towards training or deployment.

4 Evaluation and Preliminary Analysis

We evaluate our automated AI model metadata extractors through a dataset of 7,998 public
models from open source software repositories. We perform individual evaluations for each
of our seven model-specific metadata extraction modules as well as our inferred readiness
metrics. Each of the module evaluations uses its own methodology, subset of the collected
dataset, and evaluation metrics. We also manually evaluate the system as a whole with a
subset of the dataset. The evaluation dataset and each module evaluation data subset are
available in the replication package (https://zenodo.org/record/5655729).

https://zenodo.org/record/5655729
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4.1 Evaluation Dataset

To evaluate our extractors, we collected a dataset of public AI model software repositories
on GitHub. The challenge was to identify repositories on GitHub that contain AI models
rather than just being AI-related. For our dataset, a repository was considered to contain
an AI model if it contains artifacts to define and/or train a model with data, or the result-
ing artifacts of the training process. For example, AI-related frameworks, purely data, or
documentation repositories do not count. To solve this challenge, we gathered repositories
associated with AI models from three sources: 1) 284 “model zoo” example repositories, 2)
3,409 repositories extracted from AI-related papers on arXiv (1991), and 3) 4,324 reposito-
ries associated with state-of-the-art AI models (Code 2020). Table 1 summarizes the dataset.
Since 19 models overlap from multiple sources, the total number of repositories is 7,998.
We note that this dataset was created before implementing the AI Identification module and
this challenge of identifying AI model repositories inspired the module’s creation.

Model zoos are good candidates for evaluation because these repositories tend to be well-
documented and maintained. We gather 284 models from six model zoos of popular AI
frameworks: TensorFlow, Caffe2, Keras, PyTorch, MXNet, and the Model Asset Exchange.
In this case, the six model zoos are either a single GitHub repository with multiple fold-
ers each containing a model or a collection of multiple GitHub repositories. We expand
our dataset by collecting software repositories associated with AI-related papers, assuming
that these repositories are more likely to contain AI models. From over 41,000 academic
papers on a dataset of AI-related arXiv (1991) papers published on the Kaggle competition
service (Shah 2019), we gathered 3,409 repositories by using bulk paper access to search
the papers for GitHub links. After processing the extracted GitHub links to ensure unique-
ness and removing malformed or irrelevant links (e.g. links to GitHub itself rather than
repositories), the dataset contained 3,938 links. After attempting to extract metadata from
this dataset and removing inaccessible and dead repositories, the arXiv dataset contains
3,409 repositories. Additionally, whereas the model zoo dataset mostly uses deep learn-
ing, the arXiv dataset contains both deep learning and traditional machine learning models.
Lastly, we gather 4,324 repositories associated with state-of-the-art (SotA) AI papers using
the curated Papers With Code website (2020). The website lists various machine learning
tasks with associated datasets and leaderboards of the performance of AI papers for these

Table 1 Evaluation dataset summary

Model source/Zoo # Models URL

TensorFlow Models 73 https://github.com/tensorflow/models

Caffe2 Model Repository 87 https://github.com/caffe2/models

PyTorch Examples 12 https://github.com/pytorch/examples

Keras examples directory 42 https://github.com/keras-team/keras/tree/master/examples

MXNet examples directory 38 https://github.com/apache/incubator-mxnet/tree/master/example

Model Asset Exchange 32 https://developer.ibm.com/code/exchanges/models/

Model Zoo Dataset 284

arXiv Paper Dataset 3,409

SotA Paper Dataset 4,324

Total 7,998 (19 overlap)

https://github.com/tensorflow/models
https://github.com/caffe2/models
https://github.com/pytorch/examples
https://github.com/keras-team/keras/tree/master/examples
https://github.com/apache/incubator-mxnet/tree/master/example
https://developer.ibm.com/code/exchanges/models/
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datasets. One or more software repositories are linked with each of these papers. We used
data from this website to train our domain inference module because it contains model-
related metadata that is curated and annotated. We also use this labeled metadata to evaluate
some of our modules. Since the metadata extracted by our model-specific modules are not
directly available, evaluating these modules often requires manual labels available through
their public data.

The rest of this section presents a detailed evaluation, for which Table 2 gives a short
summary.

4.2 AI Model Identification

To train the AI model identification module (Section 3.1, we held out 20% (or 1,616 out of
8,072 total) repositories as a test set. Half of the repositories are known to be AI models and
half are non-AI. Evaluating the module on this test set resulted in an accuracy of 0.915 and
an F1 score of 0.915. This evaluation is a standard classification task so we report accuracy.

4.3 Model Name Extraction

To evaluate the model name extraction module (Section 3.2), we created a test set that is
a random sample of 400 repositories or 5% of the collected dataset of 7,998. Due to the
nature of the model name extractor, there is a lack of ground truth for model names in
the dataset, necessitating a manual evaluation. Model names in particular are difficult to
evaluate automatically because it is possible for multiple model names to be descriptive or
correct for a given model. For this evaluation, one of the researchers manually examined the
extracted names in the test set. A name is considered correct if it is more descriptive than the
default repository name. For example, “gan” versus “Dist-GAN.” The name must also not
include any formatting characters such as “###Model Name.” If the extracted name matches
the default repository name, it is considered incorrect unless the default repository name is
the full name of a model or approach. For example, “BERT” is correct for the BERT model
(Devlin et al. 2018) because that is the full name according to the repository. The percentage
correct of the test set was 85.3% or 341 of 400 repositories. We chose correctness as a metric
due to the qualitative nature of the evaluation.

Table 2 Evaluation results
summary Evaluation Count Metric Value

AI Identification 1,616 Accuracy 0.915

Model Name 400 Correctness 0.853

Reference 4,094 Precision 0.655

Dataset 160 F1 0.757

Framework 252 Precision 1.000

Domain Inference 978 Domain Accuracy 0.859

Task Accuracy 0.723

ML-DL Classifier 1,000 Accuracy 0.820

Readiness 80 Trainability 0.800

Deployability 0.450

System 80 Precision 0.858

Recall 0.829
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4.4 Reference Extraction

To evaluate the reference extraction module (Section 3.3), we created a test set with 4,094
pairs of paper references and model software repositories. For this evaluation, we needed
repositories with known connections to references. We used the SotA dataset described
earlier from Papers With Code (2020) as it links together paper references with software
repositories. We assume that the link should also work in reverse: each AI model software
repository should point back to its paper. Papers in the test set may be associated with mul-
tiple repositories and repositories may be associated with multiple papers. We chose to use
precision as the metric due to the direction of the labeled data available. Whereas our extrac-
tion has a one-to-many relationship between repositories and references, the labeled data
has a one-to-many relationship between references and repositories. To reconcile the two,
we identify pairs of references and repositories and examine if the extracted metadata for
the repository contains the associated reference. Specifically, we count the pair as correct if
the title of the reference in the test set matches one of the references in the extracted model
metadata for the repository. The precision of our evaluation was that 2,682 or 65.5% of the
pairs in test set were correct.

4.5 Dataset Extraction

To evaluate the dataset extraction module (Section 3.4), we created a test set that is a random
sample of 160 repositories out of the collected dataset of 7,998. We performed a manual
evaluation because we lacked ground truth for datasets associated with models. One of the
researchers manually examined each of the repositories in the random sample to create a
ground truth dataset of available datasets for each repository. The researcher had access to
the same documentation artifacts that the dataset extractor had access to: the README file
in most cases or the docstring if the model is a single Python file. Using that documentation,
the researcher had to determine which datasets the model used to either train or evaluate.
For example, a given image classification model may use “ImageNet” to train the model
and evaluate the model on “CIFAR-10.” For each repository in the sample, we then com-
pare the names of extracted datasets to the manually created ground truth set. The precision
of our evaluation was 76.9%, the recall was 76.0%, and the F1 score was 75.8%. In fur-
ther inspection of the evaluation sample, 86 or 53.8% of the repositories had no extracted
datasets with the F1 score of this subsample at 80.2%. In the 74 (46.2%) repositories with
extracted datasets, the F1 score was 70.5%. We report F1 score and not accuracy for this
evaluation because both incorrectly identifying datasets and incorrectly including datasets
are sources of error for this extractor.

4.6 Framework Extraction

To evaluate the framework extraction module (Section 3.5), we use 284 models from model
zoos as ground truth as most zoos are associated with a particular deep learning framework
as seen in Table 1. The precision of the module can be assessed by whether the AI frame-
works extracted from models match the framework the zoo is associated with. For example,
a model from the TensorFlow zoo should have the TensorFlow framework in its extracted
metadata. A total of 252 models are from these framework-associated model zoos which
are summarized in Table 3 along with all of the extracted frameworks. For all cases we see
that the expected framework is extracted for a precision of 100%. We use precision and
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Table 3 Frameworks extracted
from model zoos models Model zoo Count Framework(s)

Caffe2 87 Caffe2

Keras 42 Keras, TensorFlow, Theano, scikit-learn

MXNet 38 MXNet, Keras, Caffe, PyTorch, scikit-learn

PyTorch 12 PyTorch

TensorFlow 73 TensorFlow, Keras, NLTK, scikit-learn

not recall because our ground truth dataset for this evaluation only identifies one particular
framework that a model should have rather than the entire set of frameworks.

4.7 Automated Domain Inference

To train the domain inference module (Section 3.6), we created a training dataset from a
subset of the SotA dataset along with non-model software repositories. Ground truth labels
are from the Papers With Code website as described ealier. From the 3,215 repositories
labeled with domain information, we reserved 30% or 978 for a test set. Each of the repos-
itories in the test set was labeled with a domain consisting of: Computer Vision, Natural
Language Processing (NLP), Other, or Unknown (not a model). Repositories labeled with
Computer Vision or NLP domains are also labeled with an associated task. Repositories
labeled with Other domain are also labeled with a more specific domain such as Medical,
Playing Games, etc. We used stratified sampling to create the test set to ensure that each
domain and task are represented to mitigate biases. For the evaluation, we determine the
accuracy for both the domain stage and the task/other domain stage of the domain infer-
ence ensemble. As Unknown domain models do not go to the task/other domain stage, they
are not included in the accuracy calculation for that stage. The domain stage accuracy for
the test set is 0.859 and the task stage accuracy for the test set is 0.723. Table 4 breaks
down the results by domains. The domain stage performs better than the task/other domain
stage. Similarly, Computer Vision performs better than NLP which performs better than
Other domains, perhaps due to having more examples in the training set. This evaluation is
a standard classification task so we report accuracy.

4.8 Machine Learning/Deep Learning (ML-DL) Inference

We trained the classification model in our ML-DL inference module (Section 3.7) with the
Watson NLU service and held out 20% of the dataset as a test set or 1,000 repositories out
of 5,000 total. Half of the repositories in the test set are ML models and half are DL. This
service also provides an API endpoint to analyze new samples, so we use it to classify our

Table 4 Domain inference
evaluation result summary with
breakdown by domain

Dataset Size Domain accuracy Task accuracy

Test Set 978 0.859 0.723

Computer Vision 502 0.940 0.785

NLP 252 0.802 0.583

Other 134 0.597 0.597

Unknown 90 0.956
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test set. Evaluating this test set resulted in an accuracy of 0.82 and an F1 score of 0.8199.
This evaluation is a standard classification task so we report accuracy.

4.9 Readiness Metrics

To evaluate our inferred readiness metrics of and (Section 3.8), we
manually evaluated the feasibility of training and deploying a random sample of 80 reposi-
tories of the collected dataset of 7,998 and compared against the reported readiness metrics.
We first manually created a random sample of 80 repositories consisting of four partitions of
20 repositories each: low , high , low , and high .
We consider a repository “low” trainability if the metric is 35 or less and “high” if the metric
is 50 or higher. We consider a repository “low” deployability if the metric is 50 or less and
“high” if the metric is 70 or higher. These thresholds were chosen by examining the distri-
bution of readiness metrics for repositories in our sample. We chose thresholds that would
roughly divide the repositories in half. Each repository must be primarily Python with a
README file (if it exists) in English. For each of the repositories in the set, a researcher
manually created a ground truth dataset by examining the repository and using domain
knowledge to determine the feasibility of training and deployment. The researcher did not
have access to the readiness score of the repository. Training here is defined as a reposi-
tory that has enough information to run a training job which includes feasibly acquiring the
dataset used, formatting and cleaning the dataset, generating features, and running the train-
ing scripts. Deployability here is defined as a repository that has enough information to run
prediction or inference on a pre-trained model (or provide a method for training the model).
Specifically, the repository must provide for a method of performing inference on unseen
data rather than simply evaluating the trained model on a test set. In both cases, software
dependencies (with versions) also must be stated explicitly, usually in the README file
or in as is common in Python projects. Partial dependencies that cover the
primary dependencies (such as TensorFlow = 1.13) were allowed. For the ground truth set,
each repository is marked as trainable or not and deployable or not.

Table 5 reports the percentage of trainable repositories for the set and the
deployable respositories for the set. For both trainability and deployability, the
“high” case had higher percentages of reusability than the “low” cases. For trainability,
80% of the “high” set were feasibly trainable compared to 30% in the “low” set, suggesting
that the metric mostly correctly indicates reusability in terms of training. The deployability
metric performs less well as only 45% of the “high” set were feasibly deployable.

4.10 System Evaluation

To evaluate the entire extraction system holistically, we manually evaluated extracted meta-
data for a random sample of 80 repositories of the collected dataset of 7,998. We first

Table 5 Summary of readiness
metric evaluation Readiness Level Percentage

Trainability Low 30%

High 80%

Deployability Low 25%

High 45%
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manually created a ground truth dataset from this sample. The researcher who created the
ground truth dataset had access to the same sources as the automated extraction: GitHub
repository, README files, and Python code. Using domain knowledge, the researcher man-
ually annotated the extracted model metadata sample by comparing to this ground truth
dataset, listing two cases of errors: properties that are present but incorrect and properties
that are missing. For example, the automated extractor may extract three properties from a
model: name is “MNIST model”, dataset is “MNIST”, and the model has three authors: A,
B, and C. The ground truth dataset may then note that the authors list is actually A, B, and
D and that the README file also has references to two papers. In this case, there are two
errors: 1 property (authors list) is incorrect and 1 property (references) is missing. Our eval-
uation weighs each property equally, regardless of whether the property is a single value or
list. This is done to prevent biasing in favor of properties with multiple values. As the pre-
vious example demonstrates, list properties are counted as one property as it gives a more
conservative indication of the performance of the extraction; any error in the list results in
the property being marked incorrect. We then calculate precision and recall for our sample
based on the number of correct and missing extracted properties.

For the system evaluation, the researcher additionally had to determine whether the
repository was actually an AI model using the criteria described earlier. Out of the origi-
nal 80 sampled repositories from the paper dataset, 66 (82.5%) of the repositories actually
contained models. For this evaluation, the documentation of the model also needed to be in
English. Sixteen ineligible repositories (14 non-models, 2 non-English) were removed and
iteratively replaced with random samples from the dataset of 7,998 until 80 eligible total
model repositories were collected. This is due to the system evaluation dataset being cre-
ated before the implementation of the AI identification module. Due to this, the AI or not AI
property is only counted if incorrect such that it can only penalize the final evaluation. The
precision of our system evaluation was 85.82%, the recall was 82.87%, and the F1 score
was 84.24%. Upon further inspection of the evaluation sample, the performance may be
inflated due to properties extracted automatically through GitHub. If we only include meta-
data returned by AIMMX’s eight extraction modules, then the precision drops to 71.98%,
the recall to 69.40%, and the F1 score to 70.43%. We report F1 score rather than accuracy
because sources of error for this evaluation include both incorrectly identifying a property
and incorrectly including a property.

5 Preliminary Metadata Analyses

Automatically extracting standardized AI model metadata enables quantitative analysis and
tool support across a wide set of AI models. We use our evaluation dataset of 7,998 models
in exploratory analyses of model reproducibility. Furthermore, we use an existing analysis
and visualization platform to explore trends and relationships in the dataset.

5.1 Exploratory Reproducibility Analysis

We demonstrate the potential of the extracted metadata by quantitatively analyzing the eval-
uation dataset for AI model data and method reproducibility. AI research papers tend to be
poorly documented for reproducibility (Gundersen and Kjensmo 2017). Borrowing termi-
nology from Gundersen and Kjensmo (2017), we examine two types of reproducibility for
AI models in our evaluation dataset: data and method reproducibility. Data reproducibility
is the data used in AI experiments whereas method reproducibility are the algorithms used
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and decisions behind algorithm selection. We examine extracted datasets to explore data
reproducibility in our models and extracted references to explore method reproducibility.
Our analysis is exploratory because we do not attempt to manually reproduce AI models
(such as in Gundersen and Kjensmo 2017; Pimentel et al. 2019) but rather quantitatively
analyze a larger-scale dataset for signals of reproducibility based on literature.

Table 6 reports descriptive statistics for the repositories in the dataset. We split the statis-
tics by source of the repositories as described in the previous section: “model zoos”, from
arXiv (arXiv 1991) papers, and state-of-the-art AI models (Code 2020) (with 19 models
that overlap). We report the median Stars of repositories, the percentage of repositories
that primarily use Python (includes Jupyter Notebooks which tend to be popular with data
scientists), repositories with README files (which our extractors use as a source of infor-
mation), repositories with inferred domains (cannot be “Unknown”), at least one extracted
reference, at least one extracted dataset, and at least one extracted AI-related framework.
We note that most (72%) models in the dataset contain at least one extracted reference,
supporting a suggestion from preliminary user testing that data scientists tend to discuss
models in terms of papers. We also note that the high level of extracted AI frameworks is a
positive sign for reproducibility, as knowing the module dependencies in Jupyter notebooks
also promoted reproducibility (Pimentel et al. 2019) (a distribution of usage is available
in Table 7).

For data reproducibility, we explore extracted datasets in model metadata as a signal for
documentation of datasets used in AI models. Compared to traditional software engineering,
the success of AI models tends to be highly tied to data used and its processing (Wan et al.
2019; Breck et al. 2019). In enterprise settings, this reliance on quality data means that shar-
ing and reusing datasets is vitally important (Amershi et al. 2019). We use extracted datasets
to explore the degree to which types of models have documentation regarding datasets.
Table 6 shows that 42% of models in our sample have an extracted dataset with state-of-
the-art models having a higher rate of extracted datasets at 49% and arXiv models having a
lower rate at 31%. When we split the models by domain (with “Unknown” domain models
removed), there is a noticeable increase in models with datasets, particularly for the popular
domains of Computer Vision (53%) and Natural Language Processing (49%). The domain
split is summarized in Table 8. We note that a disproportionately small amount of datasets
tend to be used by most models, as the distribution of datasets to repositories in our sample
is highly skewed (skewness 6.07) with each dataset having an average of 26.0 repositories
but a median of 4.0. As a limitation in our current extractor, we are not able to automati-
cally determine if the dataset extracted from an AI model is used for training, validation, or

Table 6 Evaluation dataset descriptives

Attribute Overall Model Zoo Dataset arXiv Dataset SotA Dataset

Median Stars 12 17,513 34 2

Uses Python 74% 96% 55% 87%

Has README 99% 100% 98% 100%

Domain Inferred 70% 45% 46% 90%

References Found 72% 43% 49% 92%

Dataset Found 42% 51% 31% 49%

AI Framework Found 98% 100% 96% 100%

Count 7,998 284 3,409 4,324
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Table 7 AI frameworks extracted
with usage by repository AI framework Repository count

Caffe 415

Caffe2 113

Keras 1056

Lasagne 115

MXNet 164

NLTK 455

PyTorch 1744

TensorFlow 2556

Theano 411

scikit-learn 1139

testing. Our findings are in line with Gundersen et al.’s study with a similar rate of dataset
sharing (49% vs 42%) (Gundersen and Kjensmo 2017).

For method reproducibility, we explore extracted references in model metadata as a
signal for documentation of algorithm selection and design choices. We again borrow ter-
minology from Gundersen et al. to distinguish between AI program and AI method where
the method is the conceptual idea that the program implements. In this case, we consider
the software repository as the program and papers referred to as describing the method. In
particular, method reproducibility also considers design decisions because often AI devel-
opment is much more flexible than traditional software development, with tens to hundreds
of candidates to be considered (Wan et al. 2019). From our descriptives in Table 6, we see
that 72% of models in our sample have at least one reference extracted with state-of-the-
art models having a much higher rate of 92% whereas arXiv models are much lower at
49%. When we split the models by domain (Table 8), we note that our known domains have
higher rates of having references, such as Vision with 86% and NLP with 80%. Similar to
datasets, a small amount of references also tend to be used by most models. The distribu-
tion of references to repositories in our sample is also highly skewed (skewness 15.12) with
each reference having an average of 2.1 repositories with a median of 1.0.

Our findings suggest that both state-of-the-art models and particular domains tend to
have more documentation that supports reproducibility. The concentration of references to
particular datasets and papers suggests that there may be low-hanging fruit in better sup-
porting these popular approaches and datasets. For example, future work for AIMMX may

Table 8 Repositories with
datasets or references by domain
(“Unknown” is excluded)

Domain Count Datasets References

Computer Vision 3537 53% 86%

NLP 1484 49% 80%

Playing Games 245 29% 85%

Medical 129 23% 88%

Graphs 102 65% 85%

Speech 51 22% 84%

Misc 27 59% 89%

Total 7998 42% 72%
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identity that a popular dataset such as MNIST is used and provide meta-features of the
dataset such as size and number of classes.

5.2 Watson Discovery Analysis

To demonstrate the flexibility of our standardized model metadata, we feed the 7,998 meta-
data documents in the evaluation dataset into Watson Discovery (IBM 2020), an AI-powered
search and text analytics tool that uses NLP algorithms to aggregate and discover insights
from documents, webpages, or other structured or unstructured data. This platform makes
it possible to rapidly build cloud-based applications that help to undercover insights hidden
in unstructured data. We use this existing NLP analysis platform to demonstrate that, with-
out modification, metadata extracted via AIMMX is general enough to use directly in other
analysis platforms. Specifically, we uploaded our 7,998 metadata documents into a collec-
tion on our instance of Watson Discovery on IBM Cloud. Then, we were able to use its
Query API to aggregate documents.

Figure 4 aggregates documents by creation date and date of last update for repositories
in our dataset, showing a large increase in AI model repositories in 2018. As described
in Section 4.1, our dataset is mostly repositories from academic AI papers and the state-
of-the-art models. This sudden boost may indicate an explosion of deep learning papers
stemming from reusable innovations in 2017-2018 such as attention models (Vaswani et al.
2017), BERT (Devlin et al. 2018), and PyTorch (Paszke et al. 2019). The increase in
updated vs. created repositories may also indicate a trend away from single-use “tissue
code” repositories that accompany a paper towards these reusable AI models.

We also aggregate our documents via enhanced metadata, examining the relationships
between AI model domain and framework, dataset, and references. Figure 5 shows the rela-
tionships between AI frameworks used by models and their domain. Many of the popular
deep learning frameworks like TensorFlow, PyTorch, and Keras are used across domains
but a large portion of their models are in Computer Vision. This is in line with Fig. 6 which
shows the relationships between the top 20 datasets used by models and their domain which
are also primarily Computer Vision datasets. However, there are still some interesting over-
laps between primarily Computer Vision datasets and NLP models such as with ImageNet,
CIFAR-10, and MNIST. This may indicate some cross-polination between Computer Vision
and NLP approaches such as using CNNs to represent documents (e.g. Conneau et al. 2017

Fig. 4 Distribution of creating/updating repositories in evaluation dataset by quarter
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Fig. 5 Relationship between AI Frameworks and model domains in evaluation dataset

in our dataset). A similar cross-polination may be seen in Fig. 7 which shows the relation-
ships between the top 20 papers referenced by models and their domain. Most of the papers
are for Computer Vision models but one paper (Ronneberger et al. 2015) is cited often in
both Computer Vision and Medical models. One caveat is that all of these aggregations by
enhanced metadata are subject to errors in our extractors, such as misclassifying a model’s
domain.

6 Model Catalog Tool

As an example of a tool that is able to leverage extracted metadata, we implement and
describe a catalog web application for the discovery and management of AI models. The
web application follows a standard client-server architecture, where the model metadata is
stored in a back-end document-oriented Apache CouchDB (Apache 2019) database with a
Node.js server that implements a REST API to interact with the model metadata through



Empir Software Eng          (2022) 27:176 Page 25 of 37  176 

Fig. 6 Relationship between top 20 datasets and model domains in evaluation dataset

basic create-read-update-delete functions. The REST API automatically validates stored
or user-input metadata against the model metadata schema from Section 2. The front-end
catalog UI is implemented in React and implements a number of discovery features to search
for models. The system is available as an online service.4

The catalog application consists of three main views: a list of models with filter and
search features (see Fig. 8); a page that displays individual model details (see Fig. 9); and
a statistics page with visualizations to support data analysis (see Figs. 10 and 11). Models
in this catalog are added by providing GitHub repository URLs which are then passed to
AIMMX for metadata extraction. The extracted metadata are then inserted into the catalog’s
database, validated automatically against the schema from Section 2, and then made avail-
able for discovery. Users can then update specific fields such as name, description, tags, and
domain in the imported model should the automated mining be inaccurate or incomplete.

4https://ibm.biz/ai-model-catalog-emse

https://ibm.biz/ai-model-catalog-emse
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Fig. 7 Relationship between top 20 reference papers and model domains in eval. dataset

If the linked repository changes, the model can be re-imported, which passes the repository
back to AIMMX with an option to preserve any manually edited fields.

The model list view (Fig. 8) is the main page for discovering models and contains
summary information for each model such as name, stars, domain, frameworks used, and
lifecycle stages. While the model list itself is browsable by users, the main method of discov-
ering models is through the search and filter features, which allow for querying or selecting
multiple attributes that are based on properties in extracted model metadata. A side panel
offers the following attributes to filter: lifecycle stage, readiness, domain, frameworks, and
tags. Multiple attributes may be selected in an AND relationship and multiple values within
an attribute may be selected in an OR relationship. This enables discovering more spe-
cific kinds of models, for example, to find Computer Vision-related TensorFlow or PyTorch
model code, the filters of “Computer Vision” in Domain, “TensorFlow” and “PyTorch”
filters in Framework, and “Definition” filter in Lifecycle Stages would be selected. The
top of the model list view contains a search feature which composes metadata together
and also indexes each field as a searchable attribute directly in the CouchDB database.
Queries in our system are based on the Apache Lucene syntax (Lucene 2018) which allows
for complex queries such as number ranges and logical AND or OR. For example, typ-
ing deployability:[70 TO Infinity] into the search box will return all models
where the deployability metric is 70% or greater. We index searchable metadata in two ways
which enables two methods of searching: by general keywords or by filtering for specific
attributes. In the case of general keywords, searchable attributes are aggregated into a single
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Fig. 8 Catalog main page with list of available models, search bar and filters

string and then tokenized. This approach then allows for users to simply type any keyword
into the search box to search by any of these attributes. For example, typing resnet into
the search box will return models with “ResNet” in the name, description, references, and
so on. Specific attribute filters are also searchable, similar to the filter feature but includ-
ing additional attributes such as name, description, reference, and schema presence. Search
queries are also composable, allowing for complex queries. For example, a query that finds
a model that contains the general keyword of “ResNet” but is specifically written in the
TensorFlow framework is resnet AND framework:tensorflow.

Once a user selects a model, they can use the individual model detail view (Fig. 9) to
assess the model for reuse. Our system also provides features to assist in reusing a chosen
model. Details shown include information such as tags, extraction source, authors, license,
and references to academic papers or blogs. We also display the model’s applicable lifecy-
cle stages as well as a percentage indicator of how much information is available for a given
lifecycle stage for the selected model. For each lifecycle stage that is applicable for a model,
a tab is available that displays additional lifecycle-specific information. The model detail
view also contains the trainability and/or deployability metrics described earlier and recom-
mendations for steps needed to train or deploy a given model. The steps are based on the
readiness metrics described earlier and the recommended steps are missing metadata proper-
ties described in prose. For example, a model may be missing the property
and the corresponding suggestion to increase trainability is to “define hyperparameters for
training.”

At the top navigation bar, there is a link to the stats page that shows visualizations of the
cataloged data. As seen in Fig. 10, the page contains charts of the distribution of repositories
by category (source of data, as seen in Table 1), a pie chart of the number of datasets detected
per repository, and a bar chart of the distribution of the domains detected. As seen in Fig. 11,
the page also includes charts summarizing model lifecycle stages and readiness metrics,
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Fig. 9 Catalog individual model detail page

as well as radar charts of the AI frameworks extracted and programming languages used.
Additionally there is a bar chart of open source licenses, a word-cloud of tags, and a bar chart
that summarizes the count of attributes such as presence of Python code, README files,
references, arXiv papers, datasets, and h5 files. This page also offers the feature of filtering
the data using the same search language of the models list page, for example filtering by
“ResNet” will update all of the charts to only use models related to ResNet.

7 Discussion

Our preliminary analyses and example catalog tool are intended as demonstrations of what
is possible using a large collection of enhanced, standardized model metadata. AIMMX lets
us envision studies similar to our preliminary analyses at much larger scales. Similarly, we
use metadata from GitHub and there are a number of studies that look at collaboration and
social coding on that platform (e.g. Dabbish et al. 2012; Gonzalez et al. 2020). Enhanc-
ing that metadata with AI model-specific metadata may enable us to better understand
collaboration patterns in AI development. For example, Gonzalez et al. (2020) examine
authorship and interaction patterns in AI-related repositories. Our enhanced metadata may
enable us to understand how interaction differs between domains such as Computer Vision
or NLP. We can also envision other tools that leverage standardized model metadata such as
management dashboards or DevOps tools.
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Fig. 10 Catalog stats page top

7.1 Metadata for Reuse

We envision that besides reasoning over a multitude of AI models, AIMMX also supports
understanding and reusing individual models by automatically providing more needed con-
text. Reproducibility for AI experiments is known to be poor (Gundersen and Kjensmo
2017), and the results of our preliminary analysis support this. Part of this may be due to
inherent difficulties in fully documenting AI models: the entangled nature of components
(Sculley et al. 2015) means reusing a given model is not just providing code but also the
dataset, hyperparameters, features, software dependencies with versions, etc. This burden
of the “extra work” to make the model reusable often falls on the data scientists. Often,
this extra work does not directly benefit these data scientists (Trainer et al. 2015), perhaps
explaining the low rates of reproducibility. We envision that a library like AIMMX can
automatically perform some of this extra work or at least nudge the data scientist towards
completing it via metrics such as readiness. For example, future work may provide an
extension to a data scientist’s IDE or Jupyter notebook displaying and give hints
on how to provide documentation to improve that metric, similar to our example catalog
tool. Understanding how to reuse a model may also enable better engineering practices
in AI development such as using DevOps-style tools for AI development (Hummer et al.
2019). One such integration may be to understand what datasets a model uses and then
continuously check that code changes correctly converge on a portion of that dataset.

7.2 Threats to Validity

External Validity Despite our attempts to design AIMMX as generally as possible by not
requiring the use of specific ML or AI frameworks (Miao et al. 2016; Sethi et al. 2018)
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Fig. 11 Catalog stats page sequence

or user intervention (Vanschoren et al. 2014; Vartak et al. 2016), the current version only
supports software repositories in GitHub. Mining GitHub has its own potential challenges
(Kalliamvakou et al. 2014) but we mitigate many of them in our evaluation dataset through
not focusing on commits, pull requests, nor the social network aspects of GitHub in our
extraction. Additionally, although AIMMX should work on most repositories, many of our
features and evaluation repositories are biased towards Python. Although Python is popular
with data scientists, future work should examine differences in models that use other popular
data-science related languages such as R, Java, Matlab, or Julia.

Internal Validity During the development of the extractors, we used model zoos as canon-
ical examples (see Table 1). The model zoos chosen are popular but only contain deep
learning models. That means that our system may have unforeseen biases or errors against
non-deep machine learning models. However, this is mitigated by our evaluation dataset that
contains at least 1,139 non-deep machine learning models as well (based on the usage of the
scikit-learn framework). Similarly, our selection of models from arXiv and SotA papers may
have introduced biases towards research code rather than enterprise or application code. We
attempt to mitigate this by also including model zoos in our dataset. Another potential issue
is that some of our evaluations relied on the domain knowledge of one of the researchers
to qualitatively determine the ground truth of extracted metadata, specifically for the name,
dataset, readiness, and system evaluations. With any qualitative analysis, there is the chance
of subjectivity in the evaluation of incorrect or missing metadata properties. Also, a sin-
gle researcher performed the analysis whereas using multiple researchers and measuring
agreement would have been more robust. For the readiness evaluation, while the researcher
did not have access to the readiness score, they did know which partition each repository
belonged to which potentially introduces bias. We attempt to mitigate this bias by describing
the criteria needed to train or deploy rather than rely purely on domain knowledge. Regard-
ing the exploratory analysis presented, we determined that the evaluation dataset contains
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some erroneous repositories that do not actually contain models. Although these reposito-
ries were not included in the extraction evaluation, they were included in the exploratory
analysis due to lacking a scalable method of identifying and filtering out these repositories
at the time. This difficulty inspired us to implement the AI identification module.

Construct Validity Our extractor evaluation focused on the precision and recall in the con-
text of what is possible using its current features. Due to the extractors not analyzing the
model Python code itself except for the docstrings, the evaluation also did not make use of
it. Our extractors then are missing theoretically possible model metadata, for example, per-
haps inferring input and/or output data schemas or hyperparameters from provided Python
code. For the exploratory reproducibility analysis, we have not evaluated our findings by
manually reproducing AI models.

8 RelatedWork

This section discusses related work on studying Software and AI Development, model
metadata mining and inference, and model catalogs.

8.1 Software and AI Development

Artificial intelligence (AI) development as an engineering practice has many intersections
with software engineering practices, including mining software repositories. Kim et al.
(2016) interviewed the emerging role of data scientists on software development teams,
identifying five working styles that data scientists take on in these teams, from insight
providers, to team leads, and more relevant to our work, model-building specialists whose
models get integrated into software applications. Bangash et al. (2019) identified machine
learning-related questions asked on Stack Overflow, finding that questions fell into broad
categories of: framework, implementation, sub-domain, and algorithms. Our work also
infers information related to these broad categories, such as the AI framework, code arti-
facts, domain, and paper references for each model. It is our hope that our extracted
metadata enables similar quantitative analyses across AI models rather than Stack Over-
flow questions. Software engineering concepts have also been applied to machine learning
(ML) and AI systems, such as work by Sculley et al. (2015) examining hidden technical
debt in real-world ML systems. Relevant to our work, they highlight the importance of
strong abstractions for ML systems and managing ML-specific artifacts such as datasets
and configurations. Amershi et al. (2019) identify through interviews fundamental differ-
ences between ML and non-ML software development: the complexity of dealing with data,
model customization, and reuse require unique skills, and components are difficult to mod-
ularize due to often being “entangled.” Our work is motivated by the insight that these
important entangled components such as datasets are often not directly observable (echoed
in other papers Wan et al. 2019; Breck et al. 2019) from software repositories. Wan et al.
(2019) also use interviews to focus on the differences between ML and non-ML in many
phases of software development such as requirements, design, and testing. They find that
the reliance on data and inherent uncertainty in the development process create unique chal-
lenges for ML systems. Our work assists in documenting some of the important ML-specific
choices made in the development process such as dataset and method selection. Our work
also builds upon existing work on reproducibility in both software and AI development.
Pimentel et al. (2019) quantitatively studied the reproducibility of Jupyter notebooks, which
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are popular with data scientists. Relevant to our work, they found that the most common
causes of failure to reproduce were missing dependencies, hidden states, and data acces-
sibility. Gundersen and Kjensmo (2017) found that AI research papers tend to be poorly
documented for method, data, and experiment reproducibility. We borrow the concepts of
AI method and data reproducibility for our exploratory reproducibility study.

8.2 Model Metadata Mining and Inference

Machine learning has had a close and long relationship with data mining (Witten et al.
2016), so it is natural that data mining techniques are applied to machine learning and
AI models to analyze and enhance them. Sethi et al. (2018) extracted network topologies
from certain diagrams in academic papers about deep learning models. Vaziri et al. (2017)
extracted conversational agents from web API specifications. Machine learning experi-
ment management tools (Tsay et al. 2018; Vartak et al. 2016) often semi-automatically
extract model metadata by requiring users to instrument their model code with framework-
specific instrumentation libraries. Our software repository-based approach is also similar
to the experiment tracking MLFlow service (MLFlow 2019). However, AIMMX is con-
cerned more with extracting high-level contextual information to reuse models such as
papers, datasets, and domains rather than automatically tracking the outcomes of experi-
ments. There are also many examples of machine learning being applied to mining, such as
automatic classification of software artifacts (Ma et al. 2018). Baudart et al. (2020) mine
natural-language documentation, and Rak-amnouykit et al. (2021) mine Python code, to
extract metadata for use in AutoML. Their work focuses on hyperparameter schemas and is
thus complementary to our work, which extracts several other pieces of metadata. Projects
like ML-Schema (Publio et al. 2018), an ontology for machine learning algorithms, datasets,
and experiments, have identified a lack of interoperability between machine learning plat-
forms. Our solution was to develop a standardized model metadata schema that focuses on
a high-level and contextual view of AI models. This is in contrast to similar efforts such as
ONNX (ONNX 2017), PMML (Guazzelli et al. 2009), ML-Schema (Publio et al. 2018), or
PFA (Pivarski et al. 2016) which focus on specifically defining the model’s computational
network. For example, for the same model, our metadata would describe the domain of the
model, references to relevant papers (e.g. Szegedy et al. 2017), descriptions about where
and what the model code and definitions are (which may be ONNX, PMML, PFA, etc.), and
descriptions of where and what the training dataset is. A network definition representation
of the same model would instead describe in detail the neural network layers and its weights
and biases. Thus, the metadata we extract is complementary with these network representa-
tion formats. Gonzalez et al. (2020) analyze ownership, authorship, and interaction patterns
within a dataset of 5,224 AI-related GitHub repositories, which is similar to our evaluation
dataset except that it includes AI tools/applications as well as model repositories.

8.3 Model Catalogs

Related work has also identified a need to catalog and manage AI models and their associ-
ated pipelines and artifacts. The catalog tool in our tool suite is a type of model management
tool: it stores, tracks, and indexes AI models. A similar tool of this type is ModelDB (Vartak
et al. 2016), which automatically tracks Scikit-learn, Spark, and R models by instrument-
ing code and allows users to view and compare models. A similar system with a different
scope is ModelHub (Miao et al. 2016), which focuses on managing results and versions
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of deep learning models. Their system includes a discovery system with a model compari-
son and ranking feature (Miao et al. 2017). In contrast, OpenML (Vanschoren et al. 2014)
focuses on cataloging datasets and machine learning tasks with the intention of promoting
collaboration between data scientists. The Machine Learning Bazaar (Smith et al. 2019)
contains hand-curated metadata for a collection of models for the purpose of AutoML. Sim-
ilarly, the Lale library (Baudart et al. 2020, 2021) contains model metadata for AutoML,
with a notion of lifecycle stages including planned (pre-training), trainable, and trained. We
also note that every major deep learning framework has at least one model zoo, a collec-
tion or catalog of example models (Table 1). The automatic connections between domain,
references, datasets, and repositories in our extracted metadata is similar to the manual con-
nections made in the Papers With Code website (Code 2020). We also use this website as a
source of ground truth data for our domain inference model.

9 Conclusions

This paper describes AIMMX, our AI Model Metadata eXtractor for software repositories.
We intend AIMMX as a step towards furthering engineering support for AI development
through providing standardized metadata for existing AI models that can be acted upon
through analysis or tools. We offer the AIMMX extractor library itself as the primary con-
tribution of this work, along with an evaluation dataset of 7,998 public models and two
examples of what is possible using our tools: an exploratory analysis of reproducibility for
the models in our dataset and a catalog tool to discover and manage models. Our vision is
that AIMMX and the metadata it extracts are a step both towards managing models at scale
and towards adapting mining software repositories techniques and approaches to AI models.

Appendix A: List of Domains and Tasks Inferred

• Computer Vision

– Face Detection
– Face Verification
– Image Classification
– Image Denoising
– Image Generation
– Image-to-Image Translation
– Object Detection
– Object Localization
– Person Re-Identification
– Pose Estimation
– Scene Text Detection
– Semantic Segmentation
– Visual Question Answering
– Vision Other

• Natural Language Processing

– Dependency Parsing
– Language Modelling
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– Machine Translation
– Named Entity Recognition (NER)
– Natural Language Inference
– Part-Of-Speech Tagging
– Question Answering
– Sentiment Analysis
– Text Classification
– Text Generation
– NLP Other

• Other Domains

– Graphs
– Medical
– Playing Games
– Speech
– Miscellaneous

• Unknown
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Pezoa F, Reutter JL, Suarez F, Ugarte M, Vrgoč D. (2016) Foundations of JSON schema. In: International
conference on world wide web (WWW), pp 263–273. https://doi.org/10.1145/2872427.2883029

Pimentel JF, Murta L, Braganholo V, Freire J (2019) A large-scale study about quality and repro-
ducibility of jupyter notebooks. In: Conference on mining software repositories (MSR), pp 507–517.
https://doi.org/10.1109/MSR.2019.00077

Pivarski J, Bennett C, Grossman RL (2016) Deploying analytics with the portable format for analytics (pfa).
In: Conference on knowledge discovery and data mining (KDD), pp 579–588. http://doi.acm.org/10.
1145/2939672.2939731

Publio GC, Esteves D, ŁAwrynowicz A, Panov P, Soldatova L, Soru T, Vanschoren J, Zafar H (2018) ML
schema: exposing the semantics of machine learning with schemas and ontologies. In: Reproducibility
in machine learning workshop (RML). https://openreview.net/forum?id=B1e8MrXVxQ

Rak-amnouykit I, Milanova A, Baudart G, Hirzel M, Dolby J (2021) Extracting hyperparameter constraints
from code. In: ICLR Workshop on security and safety in machine learning systems (secML@ICLR).
https://aisecure-workshop.github.io/aml-iclr2021/papers/18.pdf

Rodrı́guez C, Baez M, Daniel F, Casati F, Trabucco JC, Canali L, Percannella G (2016) REST APIS: a large-
scale analysis of compliance with principles and best practices. In: International conference on web
engineering (ICWE), pp 21–39. https://doi.org/10.1007/978-3-319-38791-8 2

Ronneberger O, Fischer P, Brox TNavab N, Hornegger J, Wells WM, Frangi AF (eds) (2015) U-Net:
convolutional networks for biomedical image segmentation. Springer International Publishing, Cham

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo JF, Dennison
D (2015) Hidden technical debt in machine learning systems. In: Conference on neural information
processing systems (NIPS), pp 2503–2511

Sethi A, Sankaran A, Panwar N, Khare S, Mani S (2018) Dlpaper2code: auto-generation of code from deep
learning research papers. In: Conference on artificial intelligence (AAAI), pp 7339–7346. https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17100

Shah N (2019) ARXIV data from 24,000+ papers Version 2. https://www.kaggle.com/neelshah18/
arxivdataset/home. Accessed 15 Jan 2019

Shaikh S, Vishwakarma H, Mehta S, Varshney KR, Ramamurthy KN, Wei D (2017) An end-to-end machine
learning pipeline that ensures fairness policies. In: Data for good exchange. https://arxiv.org/abs/1710.
06876

Smith MJ, Sala C, Kanter JM, Veeramachaneni K (2019) The machine learning bazaar: harnessing the ML
ecosystem for effective system development. https://arxiv.org/abs/1905.08942

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, Inception-ResNet and the impact of
residual connections on learning. In: Conference on artificial intelligence (AAAI)

Trainer EH, Chaihirunkarn C, Kalyanasundaram A, Herbsleb JD (2015) From personal tool to community
resource: what’s the extra work and who will do it? In: Conference on computer supported cooperative
work (CSCW), pp 417–430. http://doi.acm.org/10.1145/2675133.2675172
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